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Abstract: Wiener index is one of the topological indices which can be used for analyzing intrinsic properties
of molecule structure in chemistry. In this paper we evaluate a wiener index of a graph (molecular graph) in two
ways: one is new method by using super edge-magic sequence (SEMS) and the other is a different approach for
existing method, using Minimal spanning tree at each vertex. By this, we can reduce laborious procedure in
existing method by spanning tree algorithms, as many possible. Particularly the studies on wiener index of the
molecular graph to analyze the structure of organic molecules like Cyclo alkane, Alkane-n-amine and Alkane-
n,n′-diamine through the SEMS have been presented in this paper.

Key words: wiener index, super edge-magic sequence, spanning tree.

AMS subject classifications: 05C12, 05C78, 05C05.

Introduction:

1.1. Back ground of wiener Index

In chemistry the Wiener index is one of the
most thoroughly studied, best distinguished and
most frequently used graph-theory-based molecular-
shape descriptors [5 and 14].

        Graph theory applied in the study of molecular
structures represents an interdisciplinary science,
called chemical graph theory or molecular topology.
By using tools taken from the graph theory, set
theory and statistics it attempts to identify structural
features involved in structure-property activity
relationships [12 and 13].

      The Wiener index W is the first topological
index to be used in chemistry [14]. A topological
indices are number associated with chemical
structures. There is not a one-to-one connection with
chemical structures and topological indices, because

several graphs may have the same topological index.
Various topological indices usually reflect molecular
size and shape.

    A topological representation of a molecule is
called molecular graph. A molecular graph is a
collection of points representing the atoms in the
molecule and set of lines representing covalent
bonds. These points are named vertices and lines are
named edges in graph theory language.

        First mathematical definition of Wiener index,
based on the concept of graph- theoretical distance
as encoded in the distance matrix [11] is due to
Hosoya [5] since its initiation the wiener index was
used in a numerous structure-property studies
[15].Wiener index was developed by the American
Chemist Harold Wiener in 1947 and used it to
determine physical properties of types of alkanes
known as paraffin [17 and 18]. Alkanes are organic
compounds exclusively composed of carbon and
hydrogen.
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       The name Wiener number or Wiener index is
nowadays in standard use in chemistry and is some
times encountered also in the mathematical literature
[9 and 10]. It is most studied topological indices
both from a theoretical point of view and
applications.[1, 4 and 7] The use of modern
topological indices in QSPR and QSAR begins with
the wiener index.

      H.Wiener defined Wiener index W (G) [3 and 8]
as the sum of smallest distance between all vertices
of the graph G

W (G) = ( , )i j
i j

d V V



The Wiener index W (G) of a graph G is defined as
the sum of the half of the distances between every
pair of vertices of G.
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1.2. Outline of the paper

    The rest of the paper is organized as follows. In
Section 2, we compute wiener index of a graph by
the following ways: (i) Through Super edge-magic
sequence and

(ii)General method-Minimal Spanning Tree
Technique at each vertex. This is a new approach for
existing one. It is time consuming method for
finding wiener index of a graph having huge number
of vertices, because there are so many spanning tree
algorithms available.

      More than that, method (i) is applicable only for
those graphs (molecular graphs) having SEMS. All
the molecular graphs can’t have SEMS, but it must
have wiener index. In that instance we can apply the
method (ii).

In Section 3 deals with identification of the chemical
compound like

Cyclo alkane, Alkane-n-amine and Alkane-n, n′-
diamine through the SEMS in addition of studies on
wiener index. This is the initial approach to design
sequences for chemical compounds by using graph
theory. It could be used as a security code in
Chemical Research. Finally, concluding remarks are
made in Section 4.

2. Super edge-magic sequences and Wiener Index

         Various authors have introduced labeling
(valuation) concepts. Kotzig and Rosa introduced
the concepts of magic valuation [6]. Ringel and

Llado [14] called this type of valuation as edge–
magic labeling. Enomoto et. al. [2] restricted the
notion of edge –magic labeling of a graph to obtain
the definition of super edge –magic labeling.

         We introduced the concepts and properties of
super edge-magic sequence in [16]. In the same
paper we discussed the following theorem:

Theorem: 2.3.1

A graph is a super edge-magic graph if and
only if it has super edge- magic sequence.

2.1. Construction of SEMS from a finite set of
natural numbers

           In the current paper to reach fruitful results
in all aspects, we convert any sequence of natural
numbers into SEMS as follows. So that molecule
structure can be extracted either from natural
number sequences or directly from any SEMS if
possible.

                 Conversion of any sequence of natural
numbers to super edge-magic sequences achieve by
pursuing the following steps.

Step1: Let (x1, x2, … , xn ) be any sequence of
natural numbers whose length is say ‘q’.

Step2: Find (y1, y2, …, yn) be another sequence of
numbers with same length such that xi+ yi is
consecutive with x1+y1≥… ≥ xn+yn, for 1≤i≤n.

Step3: Set Li= min {xi, yi ⁄1≤i≤n} and Ui = max { xi,
yi ⁄1≤i≤n }

        Now (L1, L2, …, Ln) denotes the lower end
vertices for each eE(G) and (U1,U2,…,Un) denotes
the upper end vertices for each eE(G). Then by
definition of SEMS (L1, L2, …, Ln) represents a
super edge-magic sequence and the corresponding
graph representation is

                        (L1, L2, …,Ln)

                                   ….

(U1, U2… Un)

Example 2.1.1: Suppose (3,4,5,6,1) be given any
sequence of natural numbers.

According the above steps, (x1, x2, … , x5 )=
(3,4,5,6,1) of length q=5.

(y1, y2, … , y5) =
(7,5,3,1,5) with 6≥7≥8≥9≥10.

(L1, L2, …, L5) = (3,4,3,1,1) and (U1,U2,…,Un) =
(7,5,5,6,5)
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  (3,4,3,1,1)

 (7,5,5,6,5)  this will produce super edge-magic
graph as shown in fig.1 and the corresponding
SEMS is   (3,4,3,1,1)

                             Fig.1

2.2. Calculation of Wiener index using SEMS

Either from the graph (or) sequence, we will
get one SEMS. To proceed for further to define the
following Bond Matrix.

Definition: 2.2.1. (Bond matrix)

Bond matrix is a matrix which gives relation
between every pair among the elements of the set {1,
2, 3,…, p}.

That is, it is an upper triangular(lower triangular)
matrix of super edge-magic sequence in which sum
of all the entries equal to wiener index of the
corresponding graph and is defined as follows:

W(G) =  
nnijw


 , n-number of vertices of a graph

Where wij can be defined for i<j and

       wij =
0

min.
i j

i j

whenv and v arenot related in permutationmatrix

k when noof relationsinbetweenv v inthe permutationmatrix





Where permutation matrix is the sequence
representation of a graph mentioned in section 2.1.

Observations of Bond matrix 2.2.2:

Formation of a bond matrix produces complete
information about a graph without drawing. Bond
matrix is a symmetric matrix.

(i). Number of one’s in a row (column) of a wiener
matrix is equal to degree of a vertex.

(ii). Total number of one’s in an upper triangular
matrix is equal to number of edges of a graph.

(iii). Order of the matrix is equal to number of
vertices in a graph. i.e., order of the matrix=  n= max
{Ui / 1≤i≤n}

(iv). In any column (row), If all the entries are zeros
then the corresponding vertex is a isolated vertex.
Then we say that the corresponding super edge-
magic graph has minimum deficiency [16].

(v). In any column (row) has at least one zero then
the graph is not connected. We say that it has more
than one component.

Concrete Example 2.2.3:

Consider the super edge-magic
sequence as in the example 2.1.1.

1 2 3 4 5 6 7

1

2

3

4

5

6

7

0 2 2 1 1 3

0 0 0 0 0 0

2 0 2 1 3 1

2 0 2 1 2 2

1 0 1 1 2 2

1 0 3 2 2 4

3 0 1 2 2 4

 
  
 
  
 
 

 
  

2    4   3    6    10

 Sum of all entries of upper triangular matrix (lower
triangular)= 2+4+3+6+10=25

Using Bond matrix, Wiener index of fig.1 is 25.

2.3. Calculation of Wiener index by Minimal
spanning trees

          In general, all graphs (molecular graphs) need
not have super edge-magic sequences, so wiener
index for those graphs are calculated by existing
method. But existing method is tedious for those
graphs having large number of vertices. So we
would like to suggest a new technique based on
spanning trees, because many spanning tree
algorithms are available. This can be performed by
Minimal spanning tree technique at each vertex
and is as follows.

Procedure:

In the definition of Wiener index, W (G)

= ( , )i j
i j

d V V

 . At v1, identify a spanning tree from

G which is having shortest paths from other vertices

to v1, from this 1
1

( , )j
j

d V V

  can be calculated and

dented by S1j for j>1. Similarly we identify spanning
trees at other vertices of G independently; from them
the other component of W (G) can be calculated.

4

6 1 5 3 7 2
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        Now we find distance matrix of G using above
minimal spanning trees then

11 12 13 14 1

21 22 23 24 2

3

1 2 3

1

2

.... .... .... .... 3

j

j

j

i i i ij ij

s s s s s for j

s s s s s for j

s for j

s s s s s for j i

 
   
  
 

  






           W (G) = ij
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Concrete Example 2.3.1:

Choose a graph G which hasn’t SEMS. For
this, consider a cycle on 6 vertices which doesn’t
have super edge-magic labeling. That graph is
nothing but Hexagon and its minimal spanning trees
with respect to its vertices are:

       In the above graphs doted edges for i<j, d
(vi, vj) are not considered. Since they are calculated
in the previous spanning trees. The vertices which
are marked by white circle indicate that calculation
of minimal spanning tree with respect to that vertex.
Wiener index of Hexagon is as follows:

1

2

3

4

5

1 2 3 2 1 9

1 2 3 2 8

1 2 3 6

1 2 3

2 1

j

j

j

j

j

s

s

s

s

s

 
   
   
     
      

 for i<j and 1≤j≤6; 1≤i≤5

                           Sum=27

Wiener index of Hexagon = 27.

3. Identifying a chemical compound through the
super edge-magic sequences:

      Each SEMS gives one super edge-magic graph,
but all super edge-magic graphs need not represent a
chemical compound. So that it is possible to identify
some chemical compound through the super edge-
magic sequences.

       In a graph theory language, the degree of each
vertex representing the valency (number of bonds
incident on a vertex) of the molecule in molecular
graph. Number of covalent Bonds: 4 for carbon; 3
for nitrogen; 2 for oxygen and 1 for hydrogen.

3.1. Rules for Identification

 Suppose (a1, a2, a3,….ai,   aq-2, aq-1, aq)
represents SEMS for a chemical compound and
this sequence has two parts separated by a
broken line. Notation and representation of
sequences are followed in paper[16]

 First part of the sequence always generates a
pendent edge in which vertices are atoms of
hydrogen.

 Second part of the sequence generates either a
cycle or a chain of a chemical compound
depending upon the SEMS.

 Maximum number appeared in the sequence is
denoted by total number of atoms and length of
the sequence is denoted by total number of
bonds of the compound.

 Wiener index of a chemical compound depends
upon the second part of the SEMS and it can be
calculated by using Bond matrix. Since wiener
index are calculated only for Hydrogen
suppressed graph.

The compound name corresponding sequence with
their property are discussed in Table:3.1.1.

v1 v2

v4v5

v6 v3

Mst(v5)
v1 v2

v4v5

v6

Mst(v4)

v1 v2

v4v5

v6 v3

v1 v2

v4v5

v6    v3

v1 v2

v3

v4v5

v6

v1 v2

v3

v4v5

v6

Mst(v1)

Mst(v2
)

Mst(v3)

 G



A.Vijayabarathi et al /Int.J.ChemTech Res.2013,5(4) 1851

3.2 Results and Discussion

Compound- 1: Cyclo Pentane
 Sequence Representation:

(5, 2,  4,  1,  3,  5,  2, 4, 1,3,  3, 2, 2,1,1)
↓   ↓   ↓  ↓   ↓   ↓   ↓  ↓  ↓  ↓  ↓ ↓  ↓  ↓  ↓
 13 15 12 14 11 8 10 7  9  6  5 5  4  4  3

Maximum number appeared in the above sequence
is 15 =Total number of Atoms and Length of the
sequence is 15 =Total number of Bonds of Cyclo
Pentane.

 Structure:

 Wiener Index:

1 2 3 4 5

1 2 1 1 2

2 2 2 1 1

3 1 2 2 1

4 1 1 2 2

5 2 1 1 2

 
  
 
  
  

Using Bond matrix Wiener index of Cyclo Pentane
is 15.

Compound-2: Butane-1-amine

 Sequence Representation:

(3, 5, 2,  4, 1,  3,  5, 2, 4, 1, 3,  3, 2, 2, 1)
↓   ↓   ↓   ↓  ↓   ↓   ↓  ↓  ↓   ↓  ↓  ↓  ↓  ↓ ↓

16 13 15 12 14 11 8 10 7  9 6  5  5  4 4

Maximum number appeared in the above
sequence is 16 =Total number of Atoms and Length
of the sequence is 15 =Total number of Bonds of
Butane-1-amine.

 Structure:

 Wiener Index:

1 2 3 4 5

1 2 4 1 3

2 2 2 1 1

3 4 2 3 1

4 1 1 3 2

5 3 1 1 2

 
  
 
  
  

Using Bond matrix Wiener index of Butane-1-amine
is 20.

Compound-3: Propane -1, 3- Diamine

 Sequence Representation:

(5, 2,  4,  1,  3,  5,  2, 4, 1, 3,  3, 2, 2, 1)

↓   ↓  ↓   ↓   ↓   ↓  ↓  ↓   ↓  ↓  ↓  ↓  ↓ ↓

13 15 12 14 11 8 10 7   9 6  5  5  4  4

Maximum number appeared in the above sequence
is 15 =Total number of Atoms and Length of the
sequence is 14 =Total number of Bonds.

 Structure:

 Wiener Index:

1 2 3 4 5

1 2 4 1 3

2 2 2 1 1

3 4 2 3 1

4 1 1 3 2

5 3 1 1 2

 
  
 
  
  

Wiener index of Propane 1,3- Diamine is 20.

The details of results and discussions of a chemical
compound are presented in Table :3.2.1.

4. Conclusion

                This paper contained two important
mechanisms: one is calculation of wiener index that
includes two ways: first is the new method using
SEMS and the other method is a new technique for
existing one. The other part of the mechanism is the
identification of the chemical compound through the
SEMS. This approach will help to transmit the
chemical formula into sequence.

H
C C   NC

H
H

H H

H H H

H

H    N

H
C C

  N
C

H
H

H H

H H H

H

HC

  H

H

H

H

H

H

H

H

H

C

C
C

C

C

H
H
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Table:3.1.1

Table : 3.2.1.

Compound - 1 Compound - 2 Compound - 3S.
No.

Results for chemical
compound

General
case

Specific
case for
N=2

General
case

Specific
case for
N=2

General
case

Specific case
for N=2

1. Number of Atoms 3(2N+1) 15 3(2N+1)+1 16 3(2N+1) 15
2. Number of Bonds 3(2N+1) 15 3(2N+1) 15 3(2N+1)-1 14
3. Cyclomatic number 1 1 0 0 0 0

4. Number of atoms in
the cycle/ chain 2N+1 5 2N+1 5 2N+1 5

5. Number of bonds in
the cycle /chain 2N+1 5 2N 4 2N 4

6. Chemical formula for
a compound

C2N+1H2(2N

+1)

C5H10 C2N H(2(2N)+3)

N
C4H11N NH2-(CH2)2N-1-

NH2

NH2- CH2)3-
NH2

7. IUPAC Name Cyclo
Alkanes

Cyclo
Pentane

Alkane-n-
amine

Butane-1-
amine

Alkane-n,n′-
diamine

Propane-1, 3-
Diamine

8. Wiener index calculated
by bond
matrix
using the
cycle C2N+1

15

calculated by
bond matrix
using the
chain C2N

20

calculated by
bond matrix using
the chain C2N 20

S.No. Compound Name SEMS for a Compound Property of SEMS
in[16]

Particular case for
sequence when N=2.

1. Cyclo Alkane
((2N+1,N,2N,N-1,2N-1,….
,…,1,N+1)(2)

,N+1,N,N,N-1,
N-1,…,1,1)

α*=N+2, q=3(2N+1)
p=3(2N+1)
p = q (unicycle)

(5, 2,  4,  1,  3,  5,  2, 4,

1,3,    3, 2, 2, 1,1)
–Cyclo Pentane

2. Alkane-n-Amine
(N+1,(2N+1,N,2N,N-1,
2N-1,…,1,N+1)(2)

,N+1,N,N,
N-1,N-1,…, 1)

α*=N+3
q=3(2N+1)
p=3(2N+1)+1.
p = q+1(tree)

( 3, 5, 2,  4,  1,  3,  5,  2,

4, 1, 3,    3, 2, 2, 1)
- Butane-1-Amine

3. Alkane- n, n′-Diamine ((2N+1,N,2N,N-1,
2N-1,…,1,N+1)(2)

,N+1,N,N,
N-1,N-1,…, 1)

α*=N+3
q=3(2N+1)-1
p=3(2N+1).
p = q+1(tree)

(5, 2,  4,  1,  3,  5,  2, 4,

1, 3,    3, 2, 2, 1)
- Propane-1, 3- Diamine
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