

International Journal of ChemTech Research CODEN(USA): IJCRGG ISSN : 0974-4290 Vol.5, No.6, pp 2793-2803, Oct-Dec 2013

Crystal structures analysis of Spiro Pyrrolidine derivatives

S.Suhitha¹*, T.Srinivasan¹, K.Gunasekaran¹, R.Prasanna², R.Raghunathan², D.Velmurugan¹

¹CAS in Crystallography and Biophysics, University of Madras, Guindy Maraimalai Campus, Chennai-600025, India ²Department of Organic Chemistry, University of Madras, Guindy Maraimalai Campus, Chennai-600025, India

*Corres.author: shirai2011@gmail.com

Abstract: Three Spiro Pyrrolidine compounds (1, 2 and 3) were crystallized by slow evaporation method. Crystal data were collected using BRUKER SMART APEX II CCD X-ray diffractometer. The structures were solved by direct method and refined on F^2 by full-matrix least-squares procedures using the SHELXL programs. The compound 1((6'R)-ethyl 7'-((3aS,6R,6aS)-6-(benzyloxy)-2,2-dimethyltetrahydrofuro[3,2-d][1,3]dioxol-5-yl)-2-oxo-3',6',7',7a'-tetrahydro-1'H-spiro[indoline-3,5'-pyrrolo[1,2-c]thiazole]-6'-carboxylate) crystallizes in orthorhombic P 2₁ 2₁ 2₁ space group and the final R₁ is 0.046. The compound 2 ((6'R)-7'-((3aS,6R,6aS)-6-(benzyloxy)-2,2-dimethyltetrahydrofuro[3,2-d][1,3]dioxol-5-yl)-6'-(4-chlorobenzoyl)-3',6',7',7a'-tetrahydro-1'H-spiro[indene-2,5'-pyrrolo[1,2c]thiazole]-1,3-dione) crystallizes in monoclinic P2₁ space group and the final R₁ is 0.042. The compound 3 (3'-(4-chlorobenzoyl)-1'-methyl-4'-((3aR,5R,5aS,8aS,8bR)-2,2,7,7-tetramethyltetra hydro-3aH-bis[1,3]dioxolo[4,5-b:4',5'-d]pyran-5-yl)-2H-spiro[acenaphthylene-1,2'-pyrrolidin]-2-one) crystallizes in monoclinic P2₁ space group and the final R₁ is 0.065. **Key Words:** Spiro Pyrrolidine derivatives, crystal structure.

Introduction

Spiro Pyrrolidine compounds are of great biological importance. Spiro compounds are a particular class of naturally occurring substances characterized by highly pronounced biological properties¹⁻². Spiro-pyrrolidine derivatives are unique tetracyclic 5-HT (2 A) receptor antagonists³⁻⁴. These derivatives possess anticonvulsant⁵ and anti-influenza virus⁶ activities. Substituted pyrrolidines possess anti-microbial and anti-fungal activity against various pathogens⁷. The spiro-pyrrolidine ring system is also found in pheromones, antibiotics⁸ and antitumour agents⁹⁻¹⁰. In view of this importance, we have undertaken the crystal structure determination of the title compound, a pyrrolidine derivative, and the results are presented here.

Experimental

X-ray Structure Determination: Single crystals of the three compounds suitable for x-ray diffraction were obtained by slow evaporation method. Three dimensional intensity data were collected on a Bruker¹¹ SMART APEX CCD Diffractometer using graphite monochromatized Mo-K radiation (= 0.71073 Å) at the CAS in crystallography and Biophysics, University of Madras, Chennai. The structures were solved by direct method

and refined on F^2 by full-matrix least-squares procedures using the SHELXTL programs. All non-hydrogen atoms were refined using anisotropic thermal parameters. The hydrogen atoms were included in the structure factor calculation at idealized positions by using a riding model, but not refined. Images were created with the ORTEP-3¹² or MERCURY 3.0 program. The crystallographic data for the three compounds are listed in Table 1.

Compounds	1	2	3
Empirical formula	$C_{30}H_{34}N_2O_7S_1$	$C_{35}H_{32}Cl_1N_1O_7S_1$	$C_{34}H_{33}Cl_1N_1O_7$
Formula weight	567	646	603
Temperature(K)	293(2)	293(2)	293(2)
Wavelength(Å)	0.71073	0.71073	0.71073
Crystal system,	Orthorhombic	Monoclinic	Monoclinic
Space group	P 2 ₁ 2 ₁ 2 ₁	P2 ₁	P2 ₁
Unit cell dimensions			
a(Å)	9 3781(4)	10 0729(4)	11 3547(14)
$h(\dot{A})$	126224(5)	14.6887(5)	10.0578(11)
$c(\dot{A})$	12.022+(3) 22.0022(10)	14.0007(5) 11.1640(4)	10.0378(11) 14.4224(16)
	23.9923(10)	11.1040(4)	14.4324(10)
$\alpha(1)$	90.00	90.00	90.00
β(°)	90.00	99.013(2)	110.119(7)
<u>γ(°)</u>	90.00	90.00	90.00
Volume(Å ³)	2840.1(2)	1631.41(10)	1547.65(42)
Z, D_{cal} (Mgm ⁻³)	4, 1.325	2,1.315	2,1.29
Absorption coefficient (mm ⁻¹)	0.164	0.230	0.173
F(000)	1200	676	634
Crystal size(mm)	$0.30 \times 0.25 \times 0.20$	0.30*0.25*0.20	0.30*0.25*0.30
Theta range for data collection(°)	1.70 to 28.39	1.9 to 28.4	1.5 to 28.2
	-12<=h<=12,	-13<=h<=13,	- 12<=h<=14,
Limiting indices	-16<=k<=16.	-19<=k<=19.	- 13<=k<=13.
8	-28<=1<=32	-14<=1<=14	-19<=1<=19
Reflections collected / unique	27525 / 6528	15714/7084	14199/7459
R(int)	0.061	0.026	0.066
Refinement method	Full-matrix least-squares on F ²	Full-matrix least- squares on F ²	Full-matrixleast-squares on F ²
Data / restraints / parameters	6528 / 0 / 366	7084 / 1/ 408	7459/1/394
Goodness-of-fit on F ²	0.099	1.03	0.986
Final R indices [I>2 (I)]	R1 = 0.046, WR2 = 0.105	R1=0.042,wR2=0.109	R1=0.065, wR2=0.158
R indices (all data)	R1 = 0.113, wR2 = 0.085	R1=0.057,wR2=0.101	R1=0.111, wR2=0.188
Largest diff. peak and hole(e.Å ⁻³⁾	0.20 and -0.16	0.22 and -0.27	0.48 and -0.25

Table 1. Crystal data and structure refinement for compounds 1, 2 and 3.

Synthesis of compound 1: ((6'R)-ethyl 7'-((3aS,6R,6aS)-6-(benzyloxy)-2,2-dimethyltetrahydro furo[3,2-d][1,3]dioxol-5-yl)-2-oxo-3',6',7',7a'-tetrahydro-1'H-spiro[indoline-3,5'-pyrrolo[1,2-c]thiazole]-6'-carboxylate): A mixture of (*E*)-ethyl 3-((3aS,6R,6aS)-6-(benzyloxy)-2,2-dimethyltetrahydrofuro[3,2-d][1,3]dioxol-5-yl)acrylate (300mg, 0.862 mmol), isatin (126mg, 0.862 mmol) and thiazolidine-4-carboxylic acid (114mg, 0.862 mmol) was refluxed at 120 °C in toluene for about 6 hrs under Dean stark reaction condition to give (6'R)-ethyl 7'-((3aS,6R,6aS)-6-(benzyloxy)-2,2-dimethyltetrahydrofuro[3,2-d][1,3]dioxol-5-yl)-2-oxo-3',6',7',7a'-tetra hydro-1'H-spiro[indoline-3,5'-pyrrolo[1,2-c]thiazole]-6'-carboxylate. After the completion of reaction as indicated by TLC, solvent was evaporated under reduced pressure. The crude product was purified by column

chromatography using hexane: EtOAc (3:2) as eluent. Block-shaped single crystals of the title compound suitable for X-ray diffraction analysis were obtained from a solution of hexane/ethyl acetate (3:2) by slow evaporation at room temperature.

Synthesis of compound 2: ((6'R)-7'-((3aS,6R,6aS)-6-(benzyloxy)-2,2-dimethyltetrahydrofuro [3,2-d][1,3]dioxo 1-5-yl)-6'-(4-chlorobenzoyl)-3',6',7',7a'-tetrahydro-1'H-spiro[indene-2,5'-pyrrolo[1,2c]thiazole]-1,3-dione):A mixture of (*E*)-3-((3aS,6R,6aS)-6-(benzyloxy)-2,2-dimethyltetrahydrofuro[3,2-d][1,3]dioxol-5-yl)-1-(4-chloro phenyl)prop-2-en-1-one(300mg, 0.724 mmol), ninhydrine (115mg, 0.724 mmol) and thiazolidine-4-carboxylic acid (96mg, 0.724 mmol) was refluxed at 120 °C in toluene for about 6 hrs under Dean stark reaction condition to give (6'R)-7'-((3aS,6R,6aS)-6-(benzyloxy)-2,2-dimethyltetrahydrofuro[3,2-d][1,3]dioxol-5-yl)-6'-(4-chloro benzoyl)-3',6',7',7a'-tetrahydro-1'H-spiro[indene-2,5'-pyrrolo[1,2-c]thiazole]-1,3-dione. After the completion of reaction as indicated by TLC, solvent was evaporated under reduced pressure. The crude product was purified by column chromatography using hexane: EtOAc (3:2) as eluent. Block-shaped single crystals of the title compound suitable for X-ray diffraction analysis were obtained from a solution of hexane/ethyl acetate (3:2) by slow evaporation at room temperature.

Synthesis of compound 3: (3'-(4-chlorobenzoyl)-1'-methyl-4'-((3aR,5R,5aS,8aS,8bR)-2,2,7,7-tetramethyl tetrahydro-3aH-bis[1,3]dioxolo[4,5-b:4',5'-d]pyran-5-yl)-2H-spiro[acenaphthylene-1,2'-pyrrolidin]-2-one):A mixture of (*E*)-1-(4-chlorophenyl)-3-((3aR,5R,5aS,8aS,8bR)-2,2,7,7-tetramethyltetrahydro-3aH-bis[1,3] dioxolo [4,5-b:4',5'-d]pyran-5-yl)prop-2-en-1-one (300mg, 0.761 mmol), acenaphthenequinone (138mg, 0.761 mmol) and sarcosine (80mg, 0.913 mmol) was refluxed at 120 °C in toluene for about 6 hrs under Dean stark reaction condition to give 3'-(4-chlorobenzoyl)-1'-methyl-4'-((3aR,5R,5aS,8aS,8bR)-2,2,7,7-tetramethyltetrahydro-3aH-bis[1,3]dioxolo[4,5-b:4',5'-d]pyran-5-yl)-2H-spiro[acenaphthylene-1,2'-pyrrolidin]-2-one. After the completion of reaction as indicated by TLC, solvent was evaporated under reduced pressure. The crude product was purified by column chromatography using hexane: EtOAc (4:1) as eluent. Block-shaped single crystals of the title compound suitable for X-ray diffraction analysis were obtained from a solution of hexane/ethyl acetate (4:1) by slow evaporation at room temperature.

Results and Discussion

For compound 1:

The thiazolidine ring (S1/N2/C11/C12/C13) adopts a *twisted* conformation; the furan ring (O4/C17/C18/C19/C20) adopts a *twisted* conformation, the dioxolane ring (O5/O6/C19/C20/C21) adopts an *envelope* conformation and the pyrrolidine ring (N2/C7/C9/C10/C11) adopts an *envelope* conformation. The thiazolidine ring makes a dihedral angle of $73.76(2)^{\circ}$ with the furan ring, a dihedral angle of $59.72(2)^{\circ}$ with the dioxolane ring and a dihedral angles of $53.56(1)^{\circ}$ and $60.28(1)^{\circ}$ with the two pyrrolidine ring systems, respectively. The furan ring makes a dihedral angle of $67.49(1)^{\circ}$ with the dioxolane ring and dihedral angles of $67.28(1)^{\circ}$ and $37.32(1)^{\circ}$ with the two pyrrolidine ring systems, respectively. The dioxolane ring makes a dihedral angle of $70.02(1)^{\circ}$ and $76.41(2)^{\circ}$ with the two pyrrolidine ring systems, respectively. The dioxolane ring makes a $87.79(1)^{\circ}$ which shows they are almost orthogonal to each other. The methyl carbon atoms C22 and C23 attached with the dioxolane ring deviate by -1.0777(5) Å and 1.3855(5) Å, respectively. The crystal structure and packing diagram of compound 1 are shown in Figs. 1 and 2. The packing of the crystal is stabilized by intermolecular N—H...O, C—H...O and intramolecular C—H...O hydrogen bonds. The hydrogen bond geometry for compound 1 is given in Table 2. The selected bond lengths and bond angles are given in tables 3 and 4, respectively.

Table 3	II-due com h			
Table 2	Hydrogen-D	ona geometi	ry [A] Ior C	compound 1

D—H…A	D—H	HA	DA	D—H…A
N1H1N2 ⁱ	0.86	2.53	3.309(3)	151
C2H2O1 ⁱ	0.93	2.49	3.288(3)	144
C13H13BO5 ⁱ	0.97	2.53	3.232(3)	129
C11H11O4	0.98	2.46	2.899(3)	107
C10H10O2	0.98	2.44	2.876(3)	106

Symmetry code: i)-1/2+x,-1/2-y,-z

Fig. 1. The molecular structure of the compound 1, with atom labeling. Displacement ellipsoids are drawn at the 30% probability level.

Fig. 2. The crystal packing of the compound 1 viewed along the *b* axis. The hydrogen bonds are shown as dashed lines (see Table 2 for details; H-atoms not involved in H-bonds have been excluded for clarity).

Selected bonds	Bond lengths (Å)	Selected bonds	Bond lengths (Å)
C(16)-C(15)	1.462(5)	C(13)-S(1)	1.853(3)
C(22)-C(21)	1.491(5)	C(14)-O(2)	1.191(3)
C(1)-C(2)	1.371(3)	C(14)-O(3)	1.341(3)
C(1)-C(6)	1.397(3)	C(15)-O(3)	1.466(3)
C(1)-N(1)	1.406(3)	C(17)-O(4)	1.434(3)
C(2)-C(3)	1.386(3)	C(17)-C(18)	1.521(4)
C(3)-C(4)	1.383(4)	C(18)-O(7)	1.423(3)
C(4)-C(5)	1.390(3)	C(18)-C(19)	1.523(4)
C(5)-C(6)	1.380(3)	C(19)-O(6)	1.398(3)
C(6)-C(7)	1.517(3)	C(19)-C(20)	1.511(4)
C(7)-N(2)	1.471(3)	C(20)-O(4)	1.391(3)
C(7)-C(8)	1.558(3)	C(20)-O(5)	1.399(3)
C(7)-C(9)	1.577(3)	C(21)-O(6)	1.386(3)
C(8)-O(1)	1.212(3)	C(21)-O(5)	1.422(3)
C(8)-N(1)	1.350(3)	C(21)-C(23)	1.480(5)
C(9)-C(14)	1.507(3)	C(24)-O(7)	1.417(3)
C(9)-C(10)	1.544(3)	C(24)-C(25)	1.499(4)
C(10)-C(11)	1.514(3)	C(25)-C(26)	1.366(4)
C(10)-C(17)	1.523(3)	C(25)-C(30)	1.374(4)

Table 3: Selected bond lengths [Å] for compound 1

C(11)-N(2)	1.456(3)	C(26)-C(27)	1.376(4)	
C(11)-C(12)	1.545(3)	C(27)-C(28)	1.352(4)	
C(12)-S(1)	1.800(3)	C(28)-C(29)	1.367(4)	
C(13)-N(2)	1.448(3)	C(29)-C(30)	1.374(4)	

Table 4: Selected bond angles (deg.) for compound 1

Selected bond angles	Angles (deg.)	Selected bond angles	Angles (deg.)
C(2)-C(1)-C(6)	123.1(2)	C(18)-C(17)-C(10)	115.8(2)
C(2)-C(1)-N(1)	127.4(2)	O(7)-C(18)-C(17)	108.5(2)
C(6)-C(1)-N(1)	109.5(2)	O(7)-C(18)-C(19)	110.3(2)
C(1)-C(2)-C(3)	117.3(3)	C(17)-C(18)-C(19)	103.4(2)
C(4)-C(3)-C(2)	121.3(3)	O(6)-C(19)-C(20)	105.7(2)
C(3)-C(4)-C(5)	120.2(2)	O(6)-C(19)-C(18)	113.2(3)
C(6)-C(5)-C(4)	119.6(3)	C(20)-C(19)-C(18)	104.2(2)
C(5)-C(6)-C(1)	118.5(2)	O(4)-C(20)-O(5)	111.5(2)
C(5)-C(6)-C(7)	132.6(2)	O(4)-C(20)-C(19)	108.5(2)
C(1)-C(6)-C(7)	108.84(19)	O(5)-C(20)-C(19)	104.6(2)
N(2)-C(7)-C(6)	120.6(2)	O(6)-C(21)-O(5)	106.3(2)
N(2)-C(7)-C(8)	106.78(19)	O(6)-C(21)-C(23)	110.2(3)
C(6)-C(7)-C(8)	101.30(18)	O(5)-C(21)-C(23)	109.9(3)
N(2)-C(7)-C(9)	103.34(18)	O(6)-C(21)-C(22)	107.4(3)
C(6)-C(7)-C(9)	115.23(19)	O(5)-C(21)-C(22)	109.5(3)
C(8)-C(7)-C(9)	109.07(19)	C(23)-C(21)-C(22)	113.2(3)
O(1)-C(8)-N(1)	126.8(2)	O(7)-C(24)-C(25)	108.3(2)
O(1)-C(8)-C(7)	125.0(2)	C(26)-C(25)-C(30)	118.6(3)
N(1)-C(8)-C(7)	108.2(2)	C(26)-C(25)-C(24)	120.9(3)
C(14)-C(9)-C(10)	112.6(2)	C(30)-C(25)-C(24)	120.6(3)
C(14)-C(9)-C(7)	112.93(19)	C(25)-C(26)-C(27)	120.7(3)
C(10)-C(9)-C(7)	106.26(19)	C(28)-C(27)-C(26)	120.6(3)
C(11)-C(10)-C(17)	113.5(2)	C(27)-C(28)-C(29)	119.4(3)
C(11)-C(10)-C(9)	105.18(19)	C(28)-C(29)-C(30)	120.4(3)
C(17)-C(10)-C(9)	110.44(19)	C(25)-C(30)-C(29)	120.4(3)
N(2)-C(11)-C(10)	104.76(19)	C(8)-N(1)-C(1)	112.0(2)
N(2)-C(11)-C(12)	108.2(2)	C(13)-N(2)-C(11)	109.90(19)
C(10)-C(11)-C(12)	114.6(2)	C(13)-N(2)-C(7)	118.0(2)
C(11)-C(12)-S(1)	106.15(17)	C(11)-N(2)-C(7)	110.79(18)
N(2)-C(13)-S(1)	108.24(17)	C(14)-O(3)-C(15)	115.8(2)
O(2)-C(14)-O(3)	124.1(2)	C(20)-O(4)-C(17)	107.5(2)
O(2)-C(14)-C(9)	125.9(2)	C(20)-O(5)-C(21)	110.5(2)
O(3)-C(14)-C(9)	110.0(2)	C(21)-O(6)-C(19)	111.4(2)
C(16)-C(15)-O(3)	108.5(3)	C(24)-O(7)-C(18)	114.3(2)
O(4)-C(17)-C(18)	104.6(2)	C(12)-S(1)-C(13)	92.51(12)
O(4)-C(17)-C(10)	107.8(2)		

For compound 2:

The thiazolidine ring (S1/N1/C12/C13/C14) adopts an *envelope* conformation, the furan ring (04/C22/C23/C24/C25/C26) adopts a *twisted* conformation, the dioxolane ring (05/06/C24/C25/C26) adopts an *envelope* conformation, the pyrrolidine ring (N1/C8/C10/C11/C12) adopts a *twisted* conformation and the cyclopentane ring (C1/C6/C7/C8/C9) adopts an *envelope* conformation. The thiazolidine ring makes a dihedral angle of $40.28(1)^{\circ}$ with the furan ring, it makes a dihedral angle of $89.64(1)^{\circ}$ with the dioxolane ring systems; and a dihedral angle of $79.84(1)^{\circ}$ with the cyclopentane ring. The furan ring makes a dihedral angle of $86.54(1)^{\circ}$ with the cyclopentane ring. The dioxolane ring and a dihedral angle of $84.42(1)^{\circ}$ with the pyrrolidine ring and a dihedral angle of $46.58(1)^{\circ}$ with the cyclopentane ring. The dihedral angle of $84.42(1)^{\circ}$ with the pyrrolidine ring angle of $84.42(1)^{\circ}$ with the cyclopentane ring.

pyrrolidine ring and the cyclopentane ring is $83.04(1)^\circ$. The methyl carbon atoms C27 and C28 attached with the dioxolane ring deviate by -1.1240(5) Å and 1.3553(4) Å, respectively. The chlorine atom Cl1 attached with the phenyl ring (C16-C21) deviates by 0.0533(1) Å. The crystal structure and packing diagram of compound 2 are shown in Figs. 3 and 4. The packing of the crystal is stabilized by intermolecular and intramolecular C H...O hydrogen bonds. The hydrogen bond geometry for compound 2 is given in Table 5. The selected bond lengths and bond angles are given in tables 6 and 7, respectively.

D—HA	D—H	HA	DA	D—H…A
C20H20O1 ⁱ	0.93	2.41	3.232(3)	147
C11H11O7	0.98	2.41	2.832(3)	105
С31Н31О3	0.93	2.48	3.339(4)	154
Symmetry code: i)-1/2+x,-1/2-y,-z				

 Table 5 Hydrogen-bond geometry [Å] for compound 2

Fig. 3. The molecular structure of the compound 2, with atom labeling. Displacement ellipsoids are drawn at the 30% probability level

Fig. 4. The crystal packing of the compound 2 viewed along the c axis. The hydrogen bonds are shown as dashed lines (see Table 5 for details; H-atoms not involved in H-bonds have been excluded for clarity).

Selected bonds	Bond lengths (Å)	Selected bonds	Bond lengths (Å)
C(1)-C(6)	1.383(3)	C(16)-C(21)	1.385(3)
C(1)-C(2)	1.388(3)	C(17)-C(18)	1.382(4)
C(1)-C(9)	1.481(3)	C(18)-C(19)	1.363(4)
C(2)-C(3)	1.371(5)	C(19)-C(20)	1.368(4)
C(3)-C(4)	1.385(5)	C(19)-Cl(1)	1.739(2)
C(4)-C(5)	1.379(5)	C(20)-C(21)	1.374(3)
C(5)-C(6)	1.387(3)	C(22)-O(4)	1.436(2)
C(6)-C(7)	1.469(3)	C(22)-C(23)	1.525(3)
C(7)-O(1)	1.202(3)	C(23)-O(7)	1.415(3)
C(7)-C(8)	1.547(3)	C(23)-C(24)	1.527(3)
C(8)-N(1)	1.436(3)	C(24)-O(6)	1.413(3)
C(8)-C(10)	1.549(3)	C(24)-C(25)	1.520(4)
C(8)-C(9)	1.550(3)	C(25)-O(5)	1.389(3)
C(9)-O(2)	1.199(3)	C(25)-O(4)	1.417(3)
C(10)-C(15)	1.517(3)	C(26)-O(6)	1.420(4)
C(10)-C(11)	1.543(3)	C(26)-O(5)	1.433(3)
C(11)-C(22)	1.513(3)	C(26)-C(27)	1.491(5)
C(11)-C(12)	1.526(3)	C(26)-C(28)	1.509(4)
C(12)-N(1)	1.484(3)	C(29)-O(7)	1.421(4)
C(12)-C(13)	1.518(3)	C(29)-C(30)	1.491(4)
C(13)-S(1)	1.803(3)	C(30)-C(35)	1.352(5)
C(14)-N(1)	1.466(3)	C(30)-C(31)	1.369(4)
C(14)-S(1)	1.797(3)	C(31)-C(32)	1.371(6)
C(15)-O(3)	1.208(3)	C(32)-C(33)	1.384(8)
C(15)-C(16)	1.489(3)	C(33)-C(34)	1.343(9)
C(16)-C(17)	1.385(3)	C(34)-C(35)	1.353(7)

Table 6: Selected bond lengths [Å] for compound 2

Table 7: Selected bond angles (deg.) for compound 2

Selected bond angles	Angles (deg.)	Selected bond angles	Angles (deg.)
C(6)-C(1)-C(2)	121.1(2)	C(18)-C(19)-C(20)	121.8(2)
C(6)-C(1)-C(9)	110.40(19)	C(18)-C(19)-Cl(1)	118.6(2)
C(2)-C(1)-C(9)	128.5(2)	C(20)-C(19)-Cl(1)	119.61(19)
C(3)-C(2)-C(1)	117.1(3)	C(19)-C(20)-C(21)	119.0(2)
C(2)-C(3)-C(4)	122.2(3)	C(20)-C(21)-C(16)	121.0(2)
C(5)-C(4)-C(3)	120.8(3)	O(4)-C(22)-C(11)	111.20(16)
C(4)-C(5)-C(6)	117.4(3)	O(4)-C(22)-C(23)	103.32(16)
C(1)-C(6)-C(5)	121.4(2)	C(11)-C(22)-C(23)	116.02(17)
C(1)-C(6)-C(7)	110.39(19)	O(7)-C(23)-C(22)	108.05(16)
C(5)-C(6)-C(7)	128.2(2)	O(7)-C(23)-C(24)	110.81(19)
O(1)-C(7)-C(6)	126.8(2)	C(22)-C(23)-C(24)	100.65(19)
O(1)-C(7)-C(8)	125.07(19)	O(6)-C(24)-C(25)	104.4(2)
C(6)-C(7)-C(8)	108.03(18)	O(6)-C(24)-C(23)	108.2(2)
N(1)-C(8)-C(7)	115.57(17)	C(25)-C(24)-C(23)	104.19(18)
N(1)-C(8)-C(10)	100.77(14)	O(5)-C(25)-O(4)	113.2(2)
C(7)-C(8)-C(10)	107.38(16)	O(5)-C(25)-C(24)	105.22(19)
N(1)-C(8)-C(9)	117.93(18)	O(4)-C(25)-C(24)	106.95(17)
C(7)-C(8)-C(9)	102.31(15)	O(6)-C(26)-O(5)	105.5(2)
C(10)-C(8)-C(9)	112.84(17)	O(6)-C(26)-C(27)	109.4(3)
O(2)-C(9)-C(1)	127.3(2)	O(5)-C(26)-C(27)	110.1(3)
O(2)-C(9)-C(8)	125.3(2)	O(6)-C(26)-C(28)	109.5(3)
C(1)-C(9)-C(8)	107.36(18)	O(5)-C(26)-C(28)	110.1(2)
C(15)-C(10)-C(11)	116.38(17)	C(27)-C(26)-C(28)	112.0(3)

C(15)-C(10)-C(8)	113.45(16)	O(7)-C(29)-C(30)	109.5(2)
C(11)-C(10)-C(8)	102.04(15)	C(35)-C(30)-C(31)	119.0(3)
C(22)-C(11)-C(12)	114.50(17)	C(35)-C(30)-C(29)	121.0(3)
C(22)-C(11)-C(10)	110.31(16)	C(31)-C(30)-C(29)	120.0(3)
C(12)-C(11)-C(10)	102.90(16)	C(32)-C(31)-C(30)	120.5(4)
N(1)-C(12)-C(13)	107.82(18)	C(31)-C(32)-C(33)	118.8(4)
N(1)-C(12)-C(11)	105.31(16)	C(34)-C(33)-C(32)	119.9(4)
C(13)-C(12)-C(11)	115.3(2)	C(33)-C(34)-C(35)	120.5(5)
C(12)-C(13)-S(1)	103.7(2)	C(30)-C(35)-C(34)	121.1(5)
N(1)-C(14)-S(1)	107.33(16)	C(8)-N(1)-C(14)	118.78(17)
O(3)-C(15)-C(16)	120.8(2)	C(8)-N(1)-C(12)	110.21(16)
O(3)-C(15)-C(10)	119.83(19)	C(14)-N(1)-C(12)	113.47(18)
C(16)-C(15)-C(10)	119.36(18)	C(25)-O(4)-C(22)	108.30(16)
C(17)-C(16)-C(21)	118.6(2)	C(25)-O(5)-C(26)	111.3(2)
C(17)-C(16)-C(15)	123.6(2)	C(24)-O(6)-C(26)	110.4(2)
C(21)-C(16)-C(15)	117.8(2)	C(23)-O(7)-C(29)	113.3(2)
C(18)-C(17)-C(16)	120.6(2)	C(14)-S(1)-C(13)	92.52(12)
C(19)-C(18)-C(17)	119.1(3)		

For compound 3:

The dioxolane ring (O3/04/C25/C26/C27) adopts an *envelope* conformation; the dioxolane ring (06/07/C20/C31/C32) adopts an envelope conformation; the pyrrolidine ring (N1/C12/C13/C14/C15) adopts a twisted conformation. The dihedral angle between the dioxolane rings is 78.41(2)°. The dioxolane ring makes a dihedral angle of $44.82(2)^{\circ}$ with the pyrrolidine ring; it makes a dihedral angle of $84.1(2)^{\circ}$ with the cyclopentane ring (C5/C6/C7/C11/C12) and a dihedral angle of 76.56(2)° with the furan ring. The dioxolane ring makes a dihedral angle of $39.24(2)^{\circ}$ with the pyrrolidine ring; it makes a dihedral angle of $58.7(2)^{\circ}$ with the cyclopentane ring and a dihedral angle of 77.44(2)° with the furan ring. The pyrrolidine ring makes a dihedral angle of $87.3(2)^{\circ}$ with the cyclopentane ring which shows they are almost orthogonal to each other; it makes a dihedral angle of $56.69(2)^{\circ}$ with the furan ring. The dihedral angle between the cyclopentane ring and the furan ring is 44.0(2)°. The methyl carbon atoms C28 and C29 attached with the dioxolane ring deviate by 0.0483(3) Å and -1.7189(5) Å, respectively. The methyl carbon atoms C33 and C34 attached with the dioxolane ring deviates by -0.6785(5) Å and 1.7104(4) Å, respectively. The chlorine atom Cl1 attached with the phenyl ring (C18-C23) deviates by -0.0350(1) Å. The crystal structure and packing diagram of compound 3 are shown in Figs. 5 and 6. The packing of the crystal is stabilized by intermolecular and intramolecular C—H...O hydrogen bonds. The hydrogen bond geometry for compound 3 is given in Table 8. The selected bond lengths and bond angles are given in tables 9 and 10 respectively.

Table 8 Hydrogen-bond geometry [Å] for compound 3

D—HA	D—H	HA	DA	D—H…A
C13H13O1	0.98	2.60	3.044(4)	108
C13H13O5	0.98	2.42	2.872(3)	107
C15H15BO3	0.97	2.54	2.960(4)	106
C26H26O1 ⁱ	0.98	2.54	3.474(4)	159
C (1)	4.			

Symmetry code: i) **x**, **1**+**y**, **z**

Fig. 5. The molecular structure of the compound 3, with atom labeling. Displacement ellipsoids are drawn at the 30% probability level.

Fig. 6. The crystal packing of the compound 3 viewed along the *a* axis. The hydrogen bonds are sown as dashed lines (see Table 8 for details; H-atoms not involved in H-bonds have been excluded for clarity).

Selected bonds	Bond lengths (Å)	Selected bonds	Bond lengths (Å)
C(1)-C(10)	1.393(10)	C(18)-C(23)	1.362(6)
C(1)-C(6)	1.411(6)	C(18)-C(19)	1.399(4)
C(1)-C(2)	1.424(12)	C(19)-C(20)	1.385(6)
C(2)-C(3)	1.369(12)	C(20)-C(21)	1.351(6)
C(3)-C(4)	1.387(9)	C(21)-C(22)	1.386(6)
C(4)-C(5)	1.355(6)	C(21)-Cl(1)	1.737(4)
C(5)-C(6)	1.406(6)	C(22)-C(23)	1.387(6)
C(5)-C(11)	1.480(6)	C(24)-O(5)	1.440(4)
C(6)-C(7)	1.388(6)	C(24)-C(25)	1.511(4)
C(7)-C(8)	1.379(6)	C(25)-O(3)	1.422(4)
C(7)-C(12)	1.511(5)	C(25)-C(26)	1.552(5)
C(8)-C(9)	1.432(7)	C(26)-O(4)	1.424(4)
C(9)-C(10)	1.374(11)	C(26)-C(30)	1.517(5)
C(11)-O(1)	1.199(4)	C(27)-O(3)	1.404(4)
C(11)-C(12)	1.569(5)	C(27)-O(4)	1.427(4)
C(12)-N(1)	1.468(5)	C(27)-C(28)	1.499(6)
C(12)-C(13)	1.565(5)	C(27)-C(29)	1.502(6)
C(13)-C(17)	1.512(4)	C(30)-O(7)	1.419(4)
C(13)-C(14)	1.528(5)	C(30)-C(31)	1.525(5)
C(14)-C(24)	1.524(5)	C(31)-O(6)	1.402(4)
C(14)-C(15)	1.525(5)	C(31)-O(5)	1.412(4)

Table 9: Selected bond lengths [Å] for compound 3

C(15)-N(1)	1.440(5)	C(32)-O(6)	1.422(5)	
C(16)-N(1)	1.426(5)	C(32)-O(7)	1.429(5)	
C(17)-O(2)	1.211(4)	C(32)-C(33)	1.515(5)	
C(17)-C(18)	1.492(5)	C(32)-C(34)	1.518(6)	

 Table 10: Selected bond angles (deg.) for compound 3

Selected bond angles	Angles (deg.)	Selected bond angles	Angles (deg.)
C(10)-C(1)-C(6)	117.0(6)	C(21)-C(20)-C(19)	120.4(3)
C(10)-C(1)-C(2)	129.1(6)	C(20)-C(21)-C(22)	121.0(4)
C(6)-C(1)-C(2)	113.8(7)	C(20)-C(21)-Cl(1)	120.3(3)
C(3)-C(2)-C(1)	122.3(6)	C(22)-C(21)-Cl(1)	118.6(3)
C(2)-C(3)-C(4)	122.3(6)	C(21)-C(22)-C(23)	118.2(4)
C(5)-C(4)-C(3)	117.6(6)	C(18)-C(23)-C(22)	121.8(3)
C(4)-C(5)-C(6)	121.3(4)	O(5)-C(24)-C(25)	109.1(2)
C(4)-C(5)-C(11)	132.3(5)	O(5)-C(24)-C(14)	108.0(2)
C(6)-C(5)-C(11)	106.4(3)	C(25)-C(24)-C(14)	115.7(3)
C(7)-C(6)-C(5)	114.2(3)	O(3)-C(25)-C(24)	111.9(3)
C(7)-C(6)-C(1)	123.1(5)	O(3)-C(25)-C(26)	103.6(2)
C(5)-C(6)-C(1)	122.6(5)	C(24)-C(25)-C(26)	111.0(3)
C(8)-C(7)-C(6)	119.9(4)	O(4)-C(26)-C(30)	107.2(3)
C(8)-C(7)-C(12)	130.9(4)	O(4)-C(26)-C(25)	103.7(2)
C(6)-C(7)-C(12)	109.1(3)	C(30)-C(26)-C(25)	114.4(2)
C(7)-C(8)-C(9)	117.0(5)	O(3)-C(27)-O(4)	105.5(2)
C(10)-C(9)-C(8)	122.8(6)	O(3)-C(27)-C(28)	108.7(4)
C(9)-C(10)-C(1)	120.0(5)	O(4)-C(27)-C(28)	107.6(3)
O(1)-C(11)-C(5)	128.3(4)	O(3)-C(27)-C(29)	109.8(4)
O(1)-C(11)-C(12)	123.9(3)	O(4)-C(27)-C(29)	110.9(3)
C(5)-C(11)-C(12)	107.8(3)	C(28)-C(27)-C(29)	114.0(4)
N(1)-C(12)-C(7)	111.8(3)	O(7)-C(30)-C(26)	107.4(2)
N(1)-C(12)-C(13)	103.1(2)	O(7)-C(30)-C(31)	103.7(2)
C(7)-C(12)-C(13)	115.4(3)	C(26)-C(30)-C(31)	113.9(3)
N(1)-C(12)-C(11)	116.7(3)	O(6)-C(31)-O(5)	110.1(2)
C(7)-C(12)-C(11)	102.2(3)	O(6)-C(31)-C(30)	104.2(3)
C(13)-C(12)-C(11)	108.1(3)	O(5)-C(31)-C(30)	114.1(3)
C(17)-C(13)-C(14)	117.0(3)	O(6)-C(32)-O(7)	105.0(3)
C(17)-C(13)-C(12)	113.5(3)	O(6)-C(32)-C(33)	109.0(3)
C(14)-C(13)-C(12)	104.4(3)	O(7)-C(32)-C(33)	108.6(4)
C(24)-C(14)-C(15)	119.4(3)	O(6)-C(32)-C(34)	110.4(3)
C(24)-C(14)-C(13)	109.8(3)	O(7)-C(32)-C(34)	110.2(3)
C(15)-C(14)-C(13)	100.8(3)	C(33)-C(32)-C(34)	113.3(4)
N(1)-C(15)-C(14)	102.8(3)	C(27)-O(3)-C(25)	110.0(3)
O(2)-C(17)-C(18)	122.4(3)	C(26)-O(4)-C(27)	106.2(3)
O(2)-C(17)-C(13)	122.3(3)	C(31)-O(5)-C(24)	111.7(2)
C(18)-C(17)-C(13)	115.3(3)	C(31)-O(6)-C(32)	110.1(3)
C(23)-C(18)-C(19)	118.8(4)	C(30)-O(7)-C(32)	105.7(2)
C(23)-C(18)-C(17)	121.7(3)	C(16)-N(1)-C(15)	118.1(3)
C(19)-C(18)-C(17)	119.4(3)	C(16)-N(1)-C(12)	117.5(3)
C(20)-C(19)-C(18)	119.6(4)	C(15)-N(1)-C(12)	110.6(3)

Conclusion

The crystal structure analysis of the three novel Spiro pyrrolidine derivatives was studied using x-ray diffraction method. In all the three compounds the packing of the crystal structure is stabilized by intermolecular and intramolecular C—H...O hydrogen bonds.

Acknowledgments: The authors thank the TBI X–ray facility, CAS in Crystallography and Biophysics, University of Madras, India for data collection. The authors also thank the UGC (SAP–CAS) for the departmental facilities. TS thanks the DST Inspire program for fellowship and Suhitha thanks UGC for meritorious fellowship.

Crystallographic data for the structures reported here have been deposited with CCDC (Deposition No's. CCDC 941190, 941191 & 941192). These data can be obtained free of charge via http: // www . ccdc. cam. ac. uk/ conts/ retrieving.html or from CCDC, 12 Union Road, Cambridge CB2 1EZ, UK, E-mail: deposit@ccdc.cam.ac.uk.

References

- 1. Kobayashi J., Tsuda M., Agemi K., Vacelet J., Tetrahedron, 1991, 47, 6617–6622.
- 2. James D., Kunze H. B., Faulker D., J. Nat. Prod., 1990, 54, 1137–1140.
- 3. Obniska J., Pawlowski M., Kolaczkowski M., Czopek, A., Duszyn´ska B., Klodzin´ska A., Tatarczyn´ska E., Chojnacka-Wo´jcik E., Pol. J.Pharmacol, 2003, 55, 553–557.
- 4. Peddi S., Roth B. L., Glennon R. A., Westkaemper R. B., Bioorg. Med. Chem. Lett., 2004, 14, 2279–2283.
- 5. Kaminski K., Obniska J., Acta Pol. Pharm., 2008, 65, 457–465.
- 6. Stylianakis I., Kolocouris A., Kolocouris N., Fytas G., Foscolos G. B, Padalko E., Neyts J., De Clercq E., Bioorg. Med. Chem. Lett., 2003 13, 1699–1703.
- 7. Raj A. A., Raghunathan R., SrideviKumari M. R., Raman N., Bioorg. Med. Chem., 2003, 11, 407–419.
- 8. Gore V. G., Chordia M. D., Narasimhan N. S., Tetrahedron, 1991, 46, 2483-2494.
- 9. Tietze L.-F., Schneider G., Woelfling J., Nobel T., Wulff C., Angew. Chem. Int. Ed., 1988, 37, 2469–2470.
- 10. Araki K., Suenaga K., Sengoka T., Uemura D., Tetrahedron, 2002, 58, 1983–1996.
- 11. Bruker (2008), APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, US.
- 12. Farrugia L. J., J. Appl. Cryst., 1997, 30, 565.
