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Abstract: Histone deacetylase 2 is a promising target for drug intervention and its inhibitors are useful in
treating cancer. QSAR (2D and 3D) studies were performed on a series of N-(2-Aminophenyl)-Benzamide
derivatives using Cerius2 software (accelrys). QSAR study performed on 25 analogues of which 21 were used
in the training set and the rest 4 considered for the test set. 2D- QSAR study performed using Partial least
squares (PLS), Genetic function approximation (GFA), Genetic partial least squares (G/PLS). Among these
three methods GFA method came out with good correlation coefficient r2 0.794, cross-validated coefficient r2

CV

0.634 and r2
pred of 0.6343. 3D-QSAR studies using Molecular field analysis (MFA), Regression analysis were

carried out using GFA method. A highly predictive and statistically significant model was generated. The
analyzed MFA model demonstrated a good fit, having r2 value of 0.927, cross-validated coefficient r2

CV value of
0.815 and r2

pred of 0.845.The QSAR models were found to accurately predict the Histone deacetylase2 inhibitory
activity of structurally diverse test set compounds and to yield reliable clues for further optimization of the N-
(2-Aminophenyl)-Benzamide derivatives in the data set.
Key words: Histone deacetylase 2; Genetic Function Approximation; Molecular field analysis; N-(2-
Aminophenyl)-Benzamide derivatives.

1. Introduction:

Histone deacetylase (HDACs) represent a family of
enzymes that compete with histone
acetyltransferases (HATs) to modulate chromatin
structure and transcriptional activity via change in
acetylation status of nucleosomal histones. HDACs
are deacetylating the ε-amino groups of lysine
located near the amino termini of core histone
proteins [1-2]. Mammalian HDACs have been

classified into three classes. Class I (HDACs 1, 2, 3
and 8) are homologs of yeast RPD3 and localize to
the nucleus; Class II (HDACs 4, 5, 6, 7, 9 & 10) are
homologs of yeast Hda1 and are found in both the
nucleus and cytoplasm; Class III (Sirt1 - Sirt7).
Class I and II HDACs operate by zinc-dependent
mechanisms and Class III by NAD [3]. HDAC2
highly homologous to HDAC1 is a class I HDAC
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first identified as a human homolog of the yeast
histone deacetylase Rpd3. HDAC2 found, along
with HDAC1, in the Sin3, NuRD and CoREST
complexes, also can act independently to
deacetylate non-histone proteins such as
transcription factors. HDAC activities are present in
many types of cancers. HDAC have been
recognized as attractive therapeutic targets for
anticancer [4, 5] and also for antifungal, antiviral and
anti-inflammatory treatment. HDAC2 is a potential
target for anticancer drug discovery. HDAC2 is a
key regulator of genes regulating cell cycle,
apoptosis, cell adhesion and migration. HDAC2 is
useful to treat various cancer diseases, which are
colon, gastric, cervical, prostate carcinoma, Colon
cancer, Breast cancer, Prostate cancer, pancreatic
cancer, chronic obstructive pulmonary disease and
also treating Alzheimer disease [6]. Histone
deacetylase inhibitors are more interested because
of their anticancer activity. Several class of HDAC
inhibitors are under research, which are
Hydroxamic acid, Cyclic tetra peptides, Benzamide
type derivatives. Different types of hydroxamic acid
and Benzamide derivatives are in clinical trials [7].
The Benzamide derivatives are Entinostat (MS-275)

IC50 is 0.34 uM [8], Mocetinostat (MGCD0103)
IC50 is 0.18 uM [9]. The Quantitative structure
activity relationship (QSAR) which has become an
accepted tool for establishing quantitative
relationship between biological activity and
descriptors representing physicochemical properties
of the compounds in a series using statistical
methods and it helps to predict the biological
activities of newly designed analogues contributing
to the drug discovery processes. QSAR (2D and
3D) studies of N-(2-Aminophenyl)-Benzamide
derivatives have been carried out using different
statistical methods. The aim of the research
includes finding the clues for further optimization
of the N-(2-Aminophenyl)-Benzamide derivatives
in the data set.
The derivatives of N-(2-Aminophenyl)-Benzamide
are Entinostat (MS-275) and Mocetinostat
(MGCD0103) are in phase II clinical study for
treatment of various cancers Hodgkin lymphoma,
lung cancer and breast cancer; follicular lymphoma,
Hodgkin lymphoma and acute myeloid leukemia)
respectively. The structures of the compounds are
as follows-
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2. Materials & Methods:

A) Data set:

Twenty five molecules belonging to N-(2-
Aminophenyl)-Benzamide as Histone deacetylase2
inhibitors were taken from the GOSTAR [10]

database and used for QSAR analysis. 2D-QSAR
models were generated for this series using Partial
least squares (PLS), Genetic function
approximation (GFA), Genetic partial least squares
(G/PLS) and those which come out with promising
results are discussed here. QSAR models were

generated by a training set of 21 molecules.
Predictive power of the resulting models was
evaluated by a test set of 4 molecules with
uniformly distributed biological activities. Likewise
3D-QSAR models were generated for this series
using Genetic function approximation (GFA). The
structures of all the compounds presented in Table
1 and their experimental and predicted biological
activities are presented in Table 2.
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Table 1:

Scaffold: N-(2-Aminophenyl)-Benzamide derivatives:

Compound R1 R2
1

2 T H

3

4

5

6

7

8 T
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9
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14 H

15

16 H

17 H

18 T H

19 H
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20 H

21 H

22 H

23 H

24 T H H
25 H

Total 25 compounds, 21 are training set compounds and 4 Test set compounds. Here ‘T’ indicates Test set compound.

B) Biological Activities:
The biological activity data IC50 (inhibitory
concentration for 50% in uM) were converted to
negative logarithmic dose in moles (pIC50) for

QSAR analysis. The pIC50 values of the molecules
under study spanned a wide range from 5 to 8.

C) Computational Data:
The dataset used for the QSAR analysis contains 25
molecules belonging to N-(2-Aminophenyl)-
Benzamide as Histone deacetylase2 inhibitors. All
the structures of the compounds were drawn and the
modeling analysis, calculations and visualizations
for 2D & 3D QSAR were performed using the
Cerius2 4.11 version (Accelrys) [11] on silicon work
station running under the Linux operating system.
All compounds were then subjected to energy

minimization under Open Force field Method (OFF
METHOD) using smart minimizer, partial atomic
charges were calculated using the charge-
equilibrium method and conformational analysis
search with optimal search method. Most stable
structure for each compound was generated after
energy minimization and used for calculating
various physico-chemical descriptors.

D) Molecular Descriptors:
The various descriptors selected for 2D QSAR and
3D QSAR were Conformational descriptors,
Electronic descriptors, Quantum mechanical
descriptors, Topological descriptors, Spatial

descriptors, Structural descriptors, Thermodynamic
descriptors are used as independent variables and
biological activity as dependent variable.

2.1 Method:
The different statistical models were developed
using Partial least squares (PLS), Genetic function
approximation (GFA), Genetic partial least squares
(G/PLS) Regression methods. The equations were
found to derive 2D-QSAR model [12]. The

Molecular field analysis (MFA) technique was used
to derive 3D-QSAR model using Genetic function
approximation (GFA) regression method.
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A) Statistical Parameters:
Statistical measures used for the evaluation of
models were the number of compounds in
Regression (n), the correlation coefficient (r),
square of correlation coefficient (r2), sequential
Fischer test (F), the cross–validated correlation
coefficient r2

CV and the Boot strap r2. The regression
coefficient r2 is a relative measure of fit by the
regression equation. It represents the part of the
variation in the observed data that is explained by

the regression. The F–test reflects ratio of the
variance explained by the model and the variance
due to the error in the regression. High values of the
F-test indicate that the model is statistically
significant. Validation parameter, predictive r2

(r2
pred) was calculated for evaluating the predictive

capacity of the model. The value of r2
pred greater

0.5 indicates the good predictive capacity of the
QSAR model [13].

B) Model Validation:
For the validation of QSAR models “Leave-one-out
(Loo)” Cross-validation method was used, the best
model was selected on the basis of various
statistical parameters such as correlation coefficient
(r), square of correlation coefficient (r2), sequential
Fischer test (F), quality of the each model was
estimated from the cross-validated squared

correlation coefficient (r2
CV), PRESS (Predicted

sum of squared residuals), Sum of squared
deviations from the mean (SD), and boot-strapping
square BS correlation coefficient (r2 ), which
confirm the robustness and applicability of QSAR
equation.

A) Alignment of molecules:
Molecular alignment is a crucial step in 3D-QSAR
study to obtain meaningful results. This Method is
based on moving of molecules in 3D space, which
is related to the conformational Flexibility of
molecule, the goal is to obtain optimal alignment
between the molecular structures necessary for
ligand–receptor interactions. All molecules in the
data set were aligned by shape reference molecule

using higher activity of molecule as shape reference
[14]. A highly bioactive energetically stable
conformation in this class of compounds is chosen
as a reference molecule on which other molecules
in the data set are aligned, considering shape
reference molecule as a basis for the alignment, in
figure 2.

B) Computation of steric and electrostatic fields:
The aligned biologically active conformations of N-
(2-Aminophenyl)-Benzamide derivatives are used
for the calculation of molecular fields. Molecular
fields are the steric and electrostatic interaction
energies which are used to formulate a relationship
between steric and electrostatic properties together
with the biological activities of compounds. MFA is
a method implemented in the Cerius2 program.
Its formalism calculates probe interaction
energies on a rectangular grid around a bundle
of active molecules. The surface is generated
from a “shape field.” The atomic coordinates of
the contributing models are used to compute
field values on each point of a 3D grid. MFA
then evaluates the energy between a probe
(H+ and CH3) and a molecular model at a
series of points defined by a rectangular grid.
Fields of molecules are represented with grids
in MFA and corresponding energy associated
with an MFA grid point can serve as input for

the calculation of a QSAR. These energies are
added to the study table to form new columns
headed according to the probe type, which are
used as independent variable. GFA was applied
to obtain a 3D-QSAR model based on steric and
electrostatic descriptors [15]. Many of the spatial and
structural descriptors such as polarizability, dipole
moment, radius of gyration, molecular area,
molecular dimensions, density, principal moments
of inertia, molecular volume, molecular weight,
number of rotatable bonds, hydrogen bond donors
and acceptors, log P, molar refractivity and others
were also considered along with field values [16].
Only 10% of the total variables whose variance is
highest were considered as independent variables.
The negative logarithm of the biological activity
was chosen as the dependent variable in the
generation of QSAR equations using the GFA
regression method (with only linear terms involved
in the equations) [17].
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3. Results and Discussion:
3.1 2D QSAR modeling and its validation:
In QSAR modeling, the first goal was to establish a
predictive model with a reasonable number of input
features to ensure good generalization performance.
While correlating various descriptors, biological
activity is the most important means to study
structure activity relationships. PLS, GFA and
G/PLS techniques were used in the present study
for selecting a significant set of descriptors in order
to build the significant models. In this section, the
prediction performances of the method proposed by
three different models (PLS, GFA and G/PLS) were
evaluated. The PLS, GFA and G/PLS models

predicted the training data with an r2 of 0.696, 0.794
and0.751 together with r2

CV estimating to 0.312,
0.634 and 0.588, respectively. The graph of
experimental versus predicted pIC50 values are
shown in Figure 1. The experimental and predicted
activities of the training set and test set molecules
are given in Table 2. In the case of all three models
equation (I) appears to be the best QSAR model
obtained by the GFA analysis. Equation (II) and
(III) for PLS and G/PLS respectively

GFA:
Activity (pIC50) = 7.30 - 2.79 * "LogP" + 0.214 * "MW" - 6.75 * "Hbond acceptor" - 0.0035 * "Apol" + 0.285
* "Rotlbonds" (I)

Mean Activity: 6.72; Sum of squared deviations from the mean (SD): 8.30; LOF: 0.190; r2: 0.794; r2adj: 0.740;
F-test: 14.629; LSE: 0.069; r: 0.891; C (p): -12.740; XV r2: 0.634; Boot strap (BS) r2: 0.795; BS r2err: 0.008; N
obs: 25.000; N vas: 6.000; Press: 3.037; Dep SD: 8.306; Dep mean: 6.729

PLS:
Activity = 0.00088 * "MW" + 0.0046 * "Rotlbonds" + 0.0415 * "Hbond acceptor" - 0.029 * "AlogP" + 0.0029
* "MolRef" - 0.0472 * "LogP"
                                                                                                                            (II)

G/PLS:
Activity = 4.43 + 0.0149 * "MW" - 0.155 * "LogP" - 0.0049 * "Vm" - 0.136 * "Rotlbonds" - 0.0307 * "Dipole-
mag"
                                                                                                                           (III)

This QSAR study has shown that the descriptors -
Log of the partition coefficient (LogP), Molecular
weight (MW), Number of hydrogen-bond acceptors
(H-bond acceptor), Sum of atomic polarizabilities
(Apol), Number of rotatable bonds (Rotlbonds) play
a vital role in imparting the biological activity. This
study has also shown that the biological activity is

governed by various thermodynamic, electronic and
Structural descriptors. The models provide a brief
insight into the mechanism of action of these
compounds. All these parameters considered for
further designing of newer molecules for histone
deacetylase2 inhibitor activity.

Figure 1: Graph- Experimental Activity vs. Predicted Activity

     Training Set of compounds       Test Set of Compounds
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3.1.2 Randomization Test:
To evaluate the statistical significance of the QSAR
model for an actual data set, we have employed a
one-tail hypothesis testing. The robustness of the
QSAR models for experimental training sets was
examined by comparing these models to those
derived for random data sets. Random sets were
generated by rearranging biological activities of the
training set molecules.

Randomization test results: Test results from 19
trails, r from non-random: 0.8909, Confidence
level: 90%, Mean value of r from random trails:
0.706, Standard deviation of random trails: 0.0785,
Standard deviation from non-random r to mean:
2.35, r2: 0.691, r: 0.831, LSE: 0.103, LOF: 0.285.

3.1.3 Cross-validation:
The cross-validation process repeats your
regression many times on subsets of your data.
Usually each molecule is left out in turn, and the r2

is computed using the predicted values of the
missing molecules (the cross-validated r2). Cross-
validation is often used to determine how large a

model (number of terms) can be used for a given
dataset.
Leave-one out cross-validation test results -PRESS:
2.136, Sum of Squared deviation: 8.305, Trails: 1,
r2

CV: 0.743, r2: 0.789, F-test: 13.496.

3.2 3D QSAR modeling and its validation:
3.2.1 Molecular field analysis (MFA):
The MFA model of 25 N-(2-Aminophenyl)-
Benzamide derivatives (21 compounds in a training
set; 4 compounds in a test set) was developed using
field fit alignment. The most active
compound,diethyl(((4-((2-amino-5-(thiophen-2-
yl)phenyl)carbamoyl)benzyl)amino)methyl)phosph
onate (1) was used as a shape reference to which all
the structures of compounds in the study were
aligned through pair-wise super positioning. The
method used for performing the alignment was
maximum common subgroup [MCSG].
Superimposition of the aligned molecules is shown

in Figure2. The molecular field was created using
as probes, the methyl group and a proton for steric
and electrostatic interactions respectively. The
steric (CH3) and electrostatic (H+) descriptors in
the MFA-QSAR equations specify the regions
where variations in the structural features (steric or
electrostatic) of different compounds in the training
set shows. The numbers accompanying descriptors
in the equations represent their positions in the
three-dimensional MFA grid (Figure 3). The MFA-
QSAR equation is expressed as follow-

Activity (pIC50) = 4.58 + 0.0141 * "H+/419" + 0.014 * "CH3/395" + 0.011 * "H+/408" + 0.276 * "Hbond
acceptor" - 0.0044 * "H+/509"  (IV)

Mean Activity: 6.72; Sum of squared deviations from the mean (SD): 8.30; Lack of fit (LOF): 0.067; r2: 0.927;
r2adj: 0.908; F-test: 48.164; Least square error (LSE): 0.024; r: 0.963; C(p): -12.921; XV r2: 0.815; Boot strap
(BS) r2: 0.894; BS r2err: 0.003; N obs: 25.000; N vas: 6.000; Press: 1.053; Dep SD: 8.306; Dep mean: 6.729.

A QSAR equation is generally acceptable if the
squared correlation coefficient (r2) is approximately
0.7 or higher. The r2 value is a relative measure of
the quality of fit of the model. Its value depends on
the overall variance of the data. An r2

CV, a squared
correlation coefficient generated during a cross-
validation procedure, is used as a diagnostic tool to
evaluate the predictive power of an equation. Cross-
validation is often used to determine how large a

model (number of terms) can be used for a given
data set. The predictive power of the model was
calculated by using the following equation-

r2
pred = (SD − PRESS)/SD                    (V)

Where SD is the sum of the squared deviations
between the biological activities of each molecules
and the mean activity of the training set of
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molecules and PRESS is the sum of squared
deviations between the predicted and experimental
activity values for every molecule in the test set.
 The predicted activity obtained from equation (IV)
and experimental activity of the training set and test
set molecules are summarized in Table 2. The graph
of experimental versus predicted pIC50 values are

shown in Figure 5. MFA- 3D QSAR model shows
good statistical results with r2

CV: 0.815, r2: 0.927
and r2

pred = 0.845.

Figure 2 Superimposition of the aligned molecules in the training set

Figure 3& 4.Mapping of the best MFA model and the interaction points. The most active compound, diethyl
(((4-((2-amino-5-(thiophen-2-yl) phenyl) carbamoyl) benzyl) amino) methyl) phosphonate (1), is displayed in
background as reference.
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Figure 4:

From these analysis N-(2-Aminophenyl)-
Benzamide derivatives shows the following results.
The presence of steric descriptors (+CH3/395) on
ring with positive coefficients indicates the
importance of steric interactions, bulky groups can
substitute and the presence of electrostatic
descriptor (+H+/419) and (+H+/408) with a positive
coefficient near to amide and phenyl group, while (-
H+/509) with negative coefficients substituted
aromatic ring indicates that electronegative groups
should be substituted on aromatic ring and the
appearances of descriptor H-bond acceptors with a
positive coefficient suggest that an increased
activity of the compound. These are significant in

developing novel N-(2-Aminophenyl)-Benzamide
derivatives.

3.2.1 Randomization Test:
Randomization test results: Test results from 19
trails, r from non-random: 0.927, Confidence level:
95%, Mean value of r from random trails: 0.813,
Standard deviation of random trails: 0.0995,
Standard deviation from non-random r to mean:
1.147, r2: 0.836, r: 0.919, LSE: 0.055, LOF: 0.151.

3.2.2 Cross-validation:
Leave-one out cross-validation test results -PRESS:
1.440, Sum of Squared deviation: 8.305, Trails: 1,
CV r2: 0.827, r2: 0.919, F-test: 41.075.

Figure 5: Experimental Activity vs. Predicted Activity

Training Set of Compounds Test Set of Compounds
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Table 2: The Experimental activity and Predicted activity of the training set and test set molecules are
summarized here.
Compound Experimental

pIC50
GFA Predicted Residue MFA

Predicted
Residue

1 7.853 7.743 0.110 7.185 0.668
2 T 7.468 7.067 0.401 7.287 0.181
3 7.309 6.886 0.423 6.948 0.361
4 7.221 7.191 0.030 7.394 -0.173
5 7.154 7.048 0.106 7.051 0.103
6 7.148 7.093 0.055 7.239 -0.091
7 7.142 7.133 0.009 7.157 -0.015
8 T 7.096 7.191 -0.095 7.018 0.078
9 7.045 7.083 -0.038 6.907 0.138
10 7.000 7.456 -0.456 7.023 -0.023
11 6.978 7.079 -0.101 7.183 -0.025
12 6.939 6.500 0.439 6.923 0.016
13 6.886 6.831 0.055 7.248 -0.362
14 6.853 6.329 0.524 6.560 0.293
15 6.698 6.908 -0.210 6.772 -0.024
16 6.568 6.372 0.196 6.586 -0.018
17 6.504 6.784 -0.280 6.425 0.079
18 T 6.468 6.736 -0.268 6.480 -0.012
19 6.443 6.637 -0.194 6.633 -0.190
20 6.301 6.215 0.086 6.245 0.056
21 6.107 6.058 0.049 6.183 -0.076
22 6.096 6.165 -0.069 6.168 -0.072
23 6.045 5.910 0.135 6.082 -0.037
24 T 5.481 5.661 -0.180 5.458 0.023
25 5.420 5.980 -0.560 5.519 -0.099

4. Conclusions:

In the present 2D QSAR investigation, all proposed
QSAR models were statistically significant.
However Model by Genetic function approximation
(GFA) Regression analysis could be considered as
best one in terms of excellent predictive abilities.
According to this LogP, Molecular weight, H-bond
acceptor, Sum of atomic polarizabilities, Number of
rotatable bonds play a vital role in imparting the
biological activity and designing novel N-(2-
Aminophenyl)-Benzamide derivatives. MFA-
3DQSAR studies were performed on a series of N-
(2-Aminophenyl)-Benzamide derivatives using
field fit alignment with high predictive ability, high
cross-validated, conventional and predictive r2. The
MFA equation suggested that electropositive group

near to amide group and the electronegative group
on substituted aromatic ring. These electronegative
and electropositive substituents might help in
increasing the activity of N-(2-Aminophenyl)-
Benzamide derivatives. The steric descriptors
indicated that the bulky substituent’s near phenyl
group increase the activity. These are important in
further lead optimization of the N-(2-
Aminophenyl)-Benzamide derivatives.
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