

International Journal of ChemTech Research CODEN(USA): IJCRGG ISSN : 0974-4290 Vol. 3, No.3, pp 1668-1680, July-Sept 2011

Drug design and In-Silico Hepatotoxicity studies of Synthesized Novel 4-Quinolone containing Pyrazolidinedione derivatives

Ankit K. Rochani¹, B.V. Suma^{1*}, C.H.S. Venkataramana¹, Judy Jays¹ and V. Madhavan²

^{1*}Department of Pharmaceutical Chemistry, ²Department of Pharmacognosy, M.S. Ramaiah College of Pharmacy, M.S.R.I.T. Post, Bangalore – 560054,India.

*Corres. author: bvs332@gmail.com Tel: (m) 9731983274, Fax: (080) 23607488

Abstract: Present research work focuses on *in-silico* drug design studies of the synthesized (n=9) novel substituted 4-quinolone containing pyrazolidinedione derivatives, screening of non hepatotoxic derivatives and finding out the characteristics of the functional groups responsible for hepatotoxicity in molecules by using *in-silico* screening of (n=180) hypothetical and novel substituted 4-quinolone containing pyrazolidinedione derivatives. In the present study, zone of inhibition data for (n=9) synthesized compounds obtained against two gram +*ve* and gram -*ve* organisms were used to develop multiple regression equations using TSAR soft. with $r^2>0.8$, t-probabilities<0.05. *In-silico* pharmacokinetic studies implied that these derivatives had no CYP450 2D6 inhibitions, low BBB penetration and good oral absorptions. QSTR (Quantitative Structure Toxicity Relationship) studies by using TOPKAT (*v6.1*) in various computational animal models showed considerable safety. This was followed by multiple regression equations development using computational LD₅₀, LC₅₀ and LOAEL values for synthesized derivatives were validated by comparing them with standard compounds and computational descriptors.

Keywords: QSAR, fluoroquinolone, antibacterial agents, pyrazolidin-3,5-dione, anti-inflammatory agents.

Introduction and Experimental

There has been a biggest problem of bacterial resistance ever since the development of anti-bacterial agents. It was also found from the literature review that it takes nearly 14 years and 800 million dollars to get a new molecule into the market. Considering that 50% of the compounds fails in preclinical study phases, which leaves unsuitable compounds to progress into clinical testing, great interest has been

focused on the determining the pharmacokinetic profile of the new molecules developed prior to its sending for animal or human testing¹.

The aim of this experimental study was to carry out computational high through put studies on synthesized (n=9) novel 4-quinolone containing pyrazolidine-3,5-dione derivatives. Quinolones are reported to have anti-bacterial activity, good anti-mitotic action and anti-tumor activity whereas pyrazolidine-3,5-dione

was reported to have anti-inflammatory, anti-bacterial and angiotensin II receptor antagonist^{2,3}. The work of clubbing 4-quinolone and pyrazolidine-3,5-dione together and getting broad spectrum antibacterial and anti-inflammatory activity has been recently reported by our group⁴.

Rationale for this study was to gain an insight into structural features related to improving anti-bacterial activity, pharmacokinetic and toxicity profile of the synthesized (n=9) derivatives. These in-silico data were also validated by comparing them with the data from standard drug molecules. Present research also focuses on the determination of structural features required for reduction of dose dependent hepatotoxicity of (n=9) synthesized derivatives by using (n=180) hypothetical structures and analysing them using high through put in-silico technique. Followed by predicting activity using developed multiple regression equations for synthesized (n=9) derivatives along with pharmacokinetic and toxicity profile for non-hepatotoxic hits.

Materials and Method

In the present research work high through put screening of synthesized (3A-3I) derivatives (table 1a) and hypothetical structures were carried out. Softwares used for above study were D. S Viewer Pro., TSAR (Oxford Soft.), Accord for Excel (v6.1) and TOPKAT (v6.2). All these softwares were obtained from Accelrys Inc. QSAR, QSTR, ADME and Screening studies were carried out using Hewlett Packard computer system.

A set of (n=9) 4-quinolone pyrazolidine-3,5-dione derivatives were synthesized and checked for their anti-bacterial activity using zone of inhibition studies⁴. The biological activity data zone of inhibition in mm (table 1(b)) reported for *S. aureus*, *B. subtilis*, *Proteus vulgaris* and *Klebsiella pneumoniae* were subjected to QSAR, QSTR and ADME screening using Accelrys software modules. All the 2D structures were drawn in

ACD/ChemSketch (freeware) and these were transferred to D.S Viewer Pro for the conversion of 2D to 3D structures structures and for energy optimization. The file formats for 3D structures was changed to .smi and were used for QSAR studies using TSAR soft. This software was used to develop multiple regression equations by establishing correlationship between suitable physicochemical parameters and biological activity. Here, different combinations were tried and only those equations which gave best possible values for r^2 , $r^2(C.V)$, s, F and t-probabilities were selected.

The smiles notations for (n=9) synthesize derivatives were transferred to TOPKAT (v 6.2) for carrying out toxicity studies in various virtual animal models. This software was also used determine carcinogenicity calls (as per FDA and NTP norms) for these (n=9)synthesized derivatives. The 2D structures for (n=9)derivatives were also introduced into Accord for Excel (v 6.1) for carrying out ADME screening. The descriptor values for all the molecules were calculated using "Calculate" module of the program. Later the pharmacokinetic descriptors were used for plotting HIA (Human Intestinal Absorption) and BBB (Blood Brain Barrier) plots.

Apart from the drug design studies of (n=9) synthesized derivatives an analysis of n=180 hypothetical molecules were carried out. Here, a search in the product catalogue of Sigma Aldrich was carried out and recorded which provided us 15 anilines 12 aliphatic/aromatic substituted and hydrazines. And using these two types of reagents, 180 hypothetical compounds were determined. These compounds were chosen for high through put screening of non dose dependent hepatotoxic hits and to understand nature of effect of these substituents on biological activity, pharmacokinetic behaviour and toxicity profile by using all the above mentioned drug design software by Accelrys Inc.

 Table 1(a): Structures of synthesized (n=9) 3A-3I compounds

	$\begin{array}{ c c c c c } \hline R_2 & O & O & R_3 \\ \hline R_2 & N & N & O \\ \hline R_1 & N & O & O \\ \hline R_1 & H & O & O \\ \hline \end{array}$								
	3A	3B	3 C	3D	3 E	3F	3 G	3 H	3I
R1	Chloro	Н	Н	Н	Н	Н	Н	Н	Chloro
R2	Fluoro	Н	F	Cl	Br	Ι	CH ₃	NO ₂	Н
R3	Н	Н	Н	Н	Н	Н	Н	Н	Ph

		Antibacteria	Antibacterial activity zone of inhibition in (mm)						
S. No.	Compound	<i>S.aureus</i> (gram- positive)	<i>B. subtilis</i> (gram- positive)	Klebsiella pneumonieae (gram- negative)	<i>Proteus vulgaris</i> (gram-negative)				
1.	3A	17	18	21	29				
2.	3B	17	20	24	26				
3.	3C	19	17	20	30				
4.	3D	22	18	22	28				
5.	3E	20	18	22	29				
6.	3F	19	19	23	27				
7.	3G	18	20	25	28				
8.	3H	20	17	21	25				
9.	31	19	18	20	23				
10.	Ciprofloxacin	37	40	35	31				
11.	Amoxicillin	43	39	35	41				
14.	Control (DMF)	NI	NI	NI	NI				

Table 1(b): Zone of Inhibition of 3A-3I compounds in mm

Note: All the values are mean of triplicates, NI: no inhibition

Table 2(a): Multiple Regression Equation for Bacterial Zone of Inhibition

Bacterial Cell	Equation
Culture	
S. aureus	B.A= 0.35614482*X ₁ - 0.14444731*X ₂ + 1.7785262*X ₃ + 28.727625
B. subtilis	B.A= 0.023674089*X ₁ - 0.23717964*X ₂ - 0.22033824*X ₃ + 12.942339
Klebsiella	$B.A = 0.043455075*X_1 - 0.83600259*X_2 - 5.2747588*X_3 + 59.067047$
Proteus Vulgaris	$B.A = 0.0011343086*X_1 - 3.0570893*X_2 + 3.4513075*X_3 + 33.979237$

Table 2(b): Statistical values for validation of QSAR multiple regression equation

Equation	n	r	r^2	$r^{2}(C.V)$	S	f
1	9	0.945731	0.894407	0.32434	0.464628	14.1172
2	9	0.979312	0.959052	1.00000	0.286175	39.0354
3	9	0.981791	0.963913	0.905753	0.416196	44.5176
4	9	0.913086	0.833725	0.474322	1.14692	8.35692

Table 2(c): t-probability values for corresponding parameter

Equati	Bacterial Cell	Parameters And	Corresponding t-p	orobability values	
on	Culture				
		X ₁	X ₂	X ₃	
1.	S. Aureus	LogP	Molecular	Vander Waal's Energy	
			Refractivity		
	t-probability values	0.61408	0.074165	0.0032897	
2.	B. Subtilis	Molecular Mass	Rotatable Bonds	Ionisation Potential	
	t-probability values	0.000137367	0.318828	0.784561	
3.	Klebsiella	Molecular Mass	Shape flexibility	Ionisation Potential	
			Index		
	t-probability values	0.000604814	0.224927	0.00518482	
4.	Proteus Vulgaris	Molecular Mass	Rotatable Bonds	LUMO	
	t-probability values	0.904695	0.0224091	0.165323	

Figure 1(a): BBB Plot of Standard Vs Synthesized (3A to 3I) Compounds

Figure 1(b): HIA Plot of Standard Vs Synthesized (3A to 3I) Compounds

Standard Compound's HIA Absorption Plot

Synthesized (3A-3I) Compound's HIA Absorption Plot

Results and Discussion

A) QSAR: QSAR studies on synthesized compounds (n=9) 3A-3I was carried out and multiple regression equations of these compounds obtained for zone of inhibition (in mm) data for these compounds on four microorganisms are summarized in table: 2a. Various physicochemical descriptors and validation parameters for each equation are presented table: 2b and 2c. These four equations а considerable gave correlationship between the respective physicochemical parameters under study with $r^2 > 0.8$ which indicates a linear correlationship between predicted and actual biological activity values. Equation for S. aureus showed a good correlationship between thermodynamic (LogP & Vander Waal's

energy), steric (Molecular refractivity) parameter and biological activity. According to t-probability values (presented in the table: 2c) order of significance can be defined as Vander Waal's Energy > Molecular Refractivity > LogP. Equation for *B. subtilis* showed good correlationship between thermodynamic (molecular mass), steric (rotatable bonds), electronic (ionisation potential) parameters and biological activity. As per t-probability values (presented in the table: 2c) it can be stated that the order of significance can be defined as Molecular mass > Rotatable bonds > Ionisation Potential. Equation for Proteus vulgaris showed good correlationship between thermodynamic (molecular mass), steric (rotatable bonds), electronic (LUMO) parameters and biological activity. But the order of significance by t-probability values (presented

in the table: 2c) can be defined as Rotatable bonds > LUMO > Molecular mass. Equation for *Klebsiella pneumoniae* showed good correlationship between thermodynamic (molecular mass), topological (shape flexibility index), electronic (ionisation potential) parameters and biological activity. But by the t-probability values (presented in the **table: 2c**) order of significance can be defined as Molecular mass > Ionisation Potential > Shape flexibility index.

B) ADME: In present research work of lead optimisation; ADME parameters plays a significant role in new drug discovery. Data acquired for synthesized (n=9) 3A-3I derivatives is presented in table 3. Interpretation of the values was done using standards provided by Accelrys Inc. It was observed that they have slight aqueous solubility and showed good human intestinal absorption under 95% confidence limits along with nitro derivative which showed absorption values in 99% confidence limit (**figure: 1b**). Lipinski rules of five also supported that

all the synthesized derivatives were orally active molecules. BBB penetration descriptor values showed that all the compounds had low penetration (figure: 1a). Here, seven compounds fell in 99% and one in 95% confidence limits of level 3 (low penetration region). But nitro compound fell outside ellipse. The data for HIA and BBB was validated by having comparison of data from standard derivatives (Ciprofloxacin. Lomefloxacin, Ofloxacin and Sparfloxacin in table: 9) and data from synthesized compounds (figure: 1a and 1b). Hence it can be concluded that the molecular safety of synthesized derivative should be very much similar to fluoro quinolones. It was further observed that none of the (3A-3I) compounds has any CYP450 2D6 inhibition probabilities. All the compounds showed probabilities for dose dependent hepatotoxicity. Protein binding level showed that all the compounds have level 0 with Binding is < 90%. Compound 3H showed level 1 with Binding is $\geq 90\%$ (table3).

S.	Descriptor	3A	3B	3 C	3D	3 E	3 F	3 G	3 H	3I
No.										
1	ALOGP98	0.93	2.71	0.06	0.27	0.73	0.81	0.64	0.55	-0.03
2	FPSA	98.1	88.7	98.1	98.1	98.1	98.1	98.1	98.1	140.9
3	AQ.SOL.LOG	-3.30	-4.79	-2.05	-2.47	-2.87	-2.95	-2.80	-2.55	-2.46
4	AQ.SOL.LOG.LEV	3	2	3	3	3	3	3	3	3
5	BBB.LOG.LVL	3	3	3	3	3	3	3	3	3
6	CYP2D6	0	0	0	0	0	0	0	0	0
7	CYP2D6.PROB	0.29	0.34	0.21	0.13	0.39	0.29	0.36	0.40	0.32
8	HEPATOTOX	1	1	1	1	1	1	1	1	1
9	HEPATOTOX.PROB	0.71	0.93	0.80	0.76	0.73	0.76	0.76	0.62	0.83
10	HIA.FABS.LEV	0	0	0	0	0	0	0	0	1
11	HIA.FABS.T2	2.04	1.39	3.16	2.82	2.23	2.15	2.32	2.43	9.13
12	PROT.BIND.LEV	0	2	2	0	0	0	0	1	0
13	PROT.BIND.LEV.LOG	0	0	0	0	0	0	0	0	0
14	HBOND.ACCEPTOR	7	7	7	7	7	7	7	7	10
15	ALERT	False	False	False	False	False	False	False	False	False
16	HBOND.DONOR	2	1	2	2	2	2	2	2	2
17	ALERT	False	False	False	False	False	False	False	False	False
18	MLOGP.ALERT	False	False	False	False	False	False	False	False	False
19	WEIGHT.ALERT	False	False	False	False	False	False	False	False	False
20	RULE.OF.FIVE	0	0	0	0	0	0	0	0	0
21	ALERT	False	False	False	False	False	False	False	False	False

 Table 3: Descriptor values for synthesized compounds [3A-3I] of ADME functions

S.	Descriptors	Parameters	Parameters							
No										
		X ₁	X ₂	X ₃						
1.	LD ₅₀	Molecular Surface	Molecular Volume	Vander Waal's						
		Area		Energy						
	t-probability values	0.0357175	0.061696	0.3246						
2.	LC ₅₀	LogP	Molecular Refractivity	Total Dipole						
	t-probability values	0.529064	0.646931	0.00975224						
3.	LOAEL	Molecular Surface Area	Molecular Volume	Total Energy						
	t-probability values	0.025855	0.017742	0.018051						

Table 4(e): Descriptors for X₁, X₂ and X₃

Table 5(a): Toxicity probability & discriminant scores for synthesized compounds (3A-3I)

Comp.	MUTAGENICITY		DTP	DTP		SKIN IRRITATION		SKIN SEN. NEG V SENS (V 6.1)	
	Prob.	Discri.	Prob.	Discri.	Prob.	Discri.	Prob.	Discri.	
		Score		Score		Score		Score	
3A	0.003	-5.820	0.831	1.590	1.000	8.130	0.000	-30.151	
3B	0.000	-10.297	-	-	0.000	-11.590	0.000	-29.625	
3 C	0.000	-36.658	0.019	-3.932	1.000	51.012	1.000	22.782	
3D	0.000	-17.854	0.999	7.362	1.000	9.822	0.000	-28.278	
3 E	0.985	4.164	0.999	7.362	0.997	5.901	0.473	-0.109	
3F	1.000	9.209	0.999	7.362	0.989	4.529	0.010	-4.574	
3 G	0.003	-5.941	0.999	7.362	0.980	3.894	0.151	-1.729	
3 H	0.000	-15.848	1.000	11.570	1.000	13.427	0.220	-1.269	
3I	0.973	3.581	0.997	5.702	1.000	13.427	0.999	7.564	

Table 5(b): Toxicity Probability & discriminant scores for synthesized (3A-3I) compounds

Comp.	SKIN SE	NSITIZATION	OCCULAF	R IRRI. SEV/	OCCULAR	IRRI. SEV VS	
	MLD/MOD	V SEV	MOD VS N	1LD/NON	MOD (5.1)		
	(V 6.1)		(V 5.1)				
	Prob.	Discri.	Prob.	Discri. Score	Prob.	Discri. Score	
		Score					
3A	0.001	-6.988	0.995	5.349	1.000	10.502	
3B	0.814	1.480	0.728	0.984	1.000	27.685	
3 C	1.000	27.951	1.000	82.561	0.000	-18.983	
3D	0.100	-2.196	1.000	8.051	1.000	18.319	
3 E	0.991	4.684	1.000	8.882	1.000	24.048	
3F	0.999	7.092	1.000	9.173	1.000	26.053	
3 G	1.000	8.207	1.000	9.307	1.000	26.981	
3 H	0.029	-3.517	1.000	11.640	1.000	34.002	
3I	0.722	0.955	1.000	12.182	1.000	17.156	

Com	OCCU	LAR	OCCUI	AR IRRI.	AEROBIC B	IO.	RAT MT	D FEED/	
р	IRRI.	SEV	MLD V	'S NON	DEGRADAB	ILITY	WATER		
	VS MOD (5.1)		(V 5.1)		(V 6.1)				
	Prob.	Discri.	Prob.	Discri.	Computed	95% confidence	Prob.	Discri.	
		Score		Score	Values	limit		Score	
					(mg/kg)	(mg/kg)			
3A	0.995	5.349	0.000	-27.443	21.3	1.5 & 310	1.000	10.502	
3B	0.728	0.984	0.000	-31.716	14.2	1.0 & 194.3	1.000	27.685	
3 C	1.000	82.561	0.115	-2.044	62.6	14.5 & 270	0.000	-18.983	
3D	1.000	8.051	0.000	-15.799	7.5	0.6105 & 92.7	1.000	18.319	
3 E	1.000	8.882	0.000	-9.472	6.5	0.5391& 0.0791	1.000	24.048	
3F	1.000	9.173	1.000	19.424	7.5	0.619 & 89.9	1.000	26.053	
3 G	1.000	9.307	0.002	-6.233	11.5	954 & 139.6	1.000	26.981	
3H	1.000	11.640	0.002	-6.181	25.4	2.4 & 265.2	1.000	34.002	
3I	1.000	12.182	0.997	5.908	3.5	0.2738 & 45.5	1.000	17.156	

 Table 5(c): Toxicity probabilities & discriminant scores for synthesized (3A-3I) compounds

Table 5(d): Toxicity values and confidence limits for synthesized (3A-3I) compounds

Comp	Fat Head Minnow LCs	50	DAPHNIA EC ₅₀ (V 3.1)			
•						
	Computed values	95% confidence limit	Computed values	95% confidence		
	(µg/l)	$(\mu g/l)$	(mg/l)	limit(mg/l)		
3A	247.5	54.7 & 1100	6.4	1.1 & 39.1		
3B	50.9	10.8 & 241.0	1.3	0.18391 & 8.6		
3 C	2500	556.3 & 11300	0.021	0.0013 & 0.3399		
3D	535.6	118.3 & 2400	48.7	7.7 & 308.7		
3 E	395.0	87.3 & 1800	51.4	8.1 & 326.3		
3 F	390.1	86.2 & 1800	58.0	9.3 & 373.7		
3 G	381.4	84.3 & 1700	66.8	10.5 & 423.9		
3 H	448.5	99.0 & 2000	3.6	489.7 & 26.5		
3I	386.2	85.4 & 1700	183.0	23 & 1400		

C) QSTR: Rat LD₅₀, LC₅₀, and LOAEL values along with 95% confidence limits for synthesized (3A-31) derivatives are presented in table: 4a. The multiple regression equations for logLD₅₀, logLC₅₀ and Log LOAEL values along with necessary statistical values are presented in **table: 4c**, 4d and 4e. All the equations showed good correlationship. Toxicity profiles for these molecules were also reported (along with probability and discriminant values) in **table: 5a to 5d and table: 6a to 6c**. Following is the interpretation of the results

a) Mutagenicity: **3A**, **3B**, **3C**, **3D 3G** and **3H** did not show probability of mutagenicity.

b) Skin Irritation: **3B**, **3E**, **3F** and **3G** showed zero probabilities for having skin irritation.

c)Skin Sensitisation: Here two sub-models were selected for carrying obtaining the results (as shown in table: 5a and 5b). **3A**, **3D**, **3F** and **3H** did not show positive signs for skin sensitisation.

d) Occular Irritation: Here three sub-models were selected (table: 5b and 5c) for obtaining the results. Out of three, two models suggested positive signs for ocular irritation for all the compounds.

e) Aerobic Biodegradability: Compound **3F** showed signs of aerobic biodegradability.

f) Carcinogenicity calls (according to NTP or FDA norms):

None of the compounds showed any NTP female rat model carcinogenicity. **3**C did not show carcinogenicity in NTP male mouse model. **3A**, **3B**, **3C** and **3D** showed carcinogenicity in NTP female mouse model. **3C**, **3D** and **3I** did not show carcinogenicity in FDA MALE RAT NON VS CARC model. n=9 compounds [**3A-3I**] showed carcinogenicity probabilities in FDA MALE RAT SINGLE vs MULT. model. n=9 compounds [**3A-3I**] did not show carcinogenicity probabilities in FDA FEMALE RAT NON vs CARC. model. **3A**, **3C**, **3E**, **3G**, **3H** and **3I** compounds did not show carcinogenicity probabilities in FDA FEMALE RAT SINGLE NON vs CARC. model. **3C** compound did not show carcinogenicity probabilities in FDA MALE MOUSE NON vs CARC. model. Also, n=9 compounds **[3A-3I]** did not show carcinogenicity probabilities in FDA MALE MOUSE SINGLE vs MULTI & FDA FEMALE MOUSE NON vs CARC. models. **3B** compound did not show carcinogenicity probabilities in FDA FEMALE MOUSE SINGLE vs MULT. model.

Comp	NTP	MALE	NTP F	EMALE	NTP MALE		NTP	NTP	
•	RAT		RAT (V	RAT (V 3.2)		MOUSE (V 3.2)		FEMALE	
							MOUSE	4	
							(V 3.2)		
	Prob.	Discri.	Prob.	Discri.	Prob.	Discri.	Prob.	Discri.	
		Score		Score		Score		Score	
3A	1.000	11.047	0.000	-29.584	1.000	28.286	1.000	11.205	
3B	1.000	12.425	0.000	-21.517	1.000	35.235	1.000	7.612	
3 C	0.013	-4.323	0.000	-20.727	0.000	-20.447	1.000	14.547	
3D	1.000	10.972	0.000	-27.347	1.000	15.027	1.000	10.591	
3 E	1.000	10.974	0.000	-26.304	1.000	12.722	0.959	3.149	
3 F	1.000	10.972	0.000	-25.939	1.000	11.916	0.633	0.544	
3 G	1.000	10.972	0.000	-25.771	1.000	11.542	0.340	-0.661	
3 H	1.000	11.172	0.000	-11.202	0.997	5.745	0.995	5.365	
31	1.000	13.248	0.000	-8.841	1.000	20.918	0.984	4.116	

Table 6(a): Carcinogenicity probabilities for synthesized (3A-3I) compounds

Table 6(b): Carcinogenicity probabilities for synthesized (3A-3I) compounds

Comp	FDA		FDA		FDA		FDA	
•	MALE	MOUSE	MALE	MALE MOUSE		FEMALE MOUSE		MOUSE
	NON V	S CARC	SINGLE VS MULTI		NON VS CARC		SINGLE	VS
	(V 3.1)		(V 3.1)		(V 3.1)		MULT (V 3.1)	
	Prob.	Discri.	Prob.	Discri.	Prob.	Discri.	Prob.	Discri.
		Score		Score		Score		Score
3A	0.616	0.471	0.000	-25.578	0.000	-26.799	1.000	12.263
3B	0.461	-0.155	0.000	-26.082	0.000	-26.082	0.000	-13.971
3 C	0.001	-6.544	0.000	-11.666	0.000	-20.270	1.000	28.197
3D	0.935	2.648	0.000	-25.364	0.000	-22.843	1.000	10.494
3 E	0.980	3.875	0.000	-24.879	0.000	-13.589	1.000	12.102
3 F	0.925	2.510	0.000	-24.709	0.000	-10.351	1.000	12.664
3 G	0.867	1.879	0.000	-24.631	0.000	-8.852	1.000	12.925
3 H	0.990	4.565	0.000	-24.563	0.001	-6.932	1.000	29.035
3I	1.000	9.189	0.000	-25.927	0.000	-25.989	1.000	7.604

Comp	FDA	MALE	FDA	MALE	FDA		FDA	
	RAT NON VS		RAT SINGLE		FEMALE RAT		FEMALE RAT	
	CARC		VS	MULT	NON VS CARC		SINGLE NO	ON VS
	(V 3.1)		(V3.1)		(V 3.1)		CARC (V 3.1)	
	Prob.	Discri.	Prob.	Discri.	Prob.	Discri.	Prob.	Discri.
		Score		Score		Score		Score
3 A	0.983	4.056	1.000	31.384	0.000	-14.334	0.034	-3.338
3B	0.979	3.836	1.000	28.248	0.015	-4.163	1.000	12.082
3 C	0.000	-20.533	1.000	32.001	0.000	-29.627	0.000	-14.084
3D	0.020	-3.892	1.000	30.431	0.000	-14.434	0.905	2.255
3 E	0.765	1.183	1.000	28.027	0.000	-17.152	0.000	-19.825
3F	0.935	2.662	1.000	25.701	0.000	-11.891	1.000	20.270
3 G	0.988	4.935	1.000	23.609	0.000	-11.585	0.000	-14.896
3 H	0.992	4.803	1.000	24.175	0.000	-10.920	0.000	-14.144
3I	0.000	-15.051	1.000	37.054	0.000	-17.121	0.036	-3.295

Table 6(c): Carcinogenicity probabilities for synthesized (3A-3I) compounds

D) Screening Studies:

After getting results for n=180 compounds using Accelrys software modules these compounds (n=180) were classified as a) Compounds which showed to have dose dependent hepatotoxicity (170 derivatives) and b) Compounds not having dose dependent hepatotoxicity (10 derivatives) presented in table 7. Data for the compounds not having dose dependent hepatotoxicity values are summarized in table: 8(a-d). Compounds coded as C-1, C-8, C-9, L-3, L-10, L-11, M-10, F-2, F-9 and F-10 showed no dose dependent hepatotoxicity. L-11 showed least hepatotoxicity probability. Data for other ADME values for this series of non-hepatotoxic compounds are summarized in table: 8(d). From this data **F-9** and **F-10** were found to be crossing BBB upto level 2 (that is medium level BBB penetration). Compounds **L-10** showed low intestinal absorption and **L-11** showed moderate absorption while rest of the compounds showed considerable human intestinal absorption levels. But Lipinski rule of five suggested that **M-10** can also have low intestinal absorption value as its molecular weight > 500 Daltons and LogP value >5. By looking at HIA.FABS.T2 values compound **M-10** has its value on the border. Hence there are strong chances of this compound to be orally inactive in nature whereas all other compounds were found to be orally active in nature.

S No	Comn	R	R.	R.
1	Comp.			<u> </u>
1	C-I	п	п	
2	C-8	Н	Н	CH ₃ H ₃ C CH ₃
3	C-9	Н	Н	H ₃ C CH ₃
4	L-3	Н	-OCF ₃	
5	L-10	Н	-OCF ₃	H ₃ C ^{CH3}
6	L-11	Н	-OCF ₃	H ₃ C CH ₃
7	M-10	-CF ₃	-Cl	
8	F-2	Н	-CF ₃	
9	F-9	Н	-CF ₃	H ₃ C CH ₃
10.	F-10	Н	-CF ₃	H ₂ C ⁻ CH ₂

Table 7: Novel derivatives which were found to be devoid of dose dependent hepatotoxicity.

S. No.	Comp	Descriptor Values for Above Compounds								
		LogP	Molecular Refractivity	Vander Waal's Energy	Molecular Mass					
1.	C-1	1.1245	93.1767	0.988872	353.41					
2.	C-8	2.8483	110.607	3.43872	403.47					
3.	C-9	2.4151	106.132	1.71033	389.44					
4.	F-10	3.2979	112.105	0.836532	457.44					
5.	F-2	2.0073	99.1504	-0.030573	421.41					
6.	F-9	3.7311	116.58	2.62652	471.47					
7.	L-10	4.3409	117.149	2.28726	487.47					
8.	L-11	3.9077	112.674	1.10294	473.44					
9.	L-3	2.6171	99.7189	-1.05867	437.41					
10.	M-10	4.2491	121.385	1.98654	505.91					

Table 8(a): Compounds Not Showing Hepatotoxicity

Table 8(b): Descriptor values for Non Hepatotoxic Compounds

S. No.	Comp	Descriptor Values for Above Compounds						
	_	Rotatable	Ionisation Potential	Shape	LUMO			
		Bonds		flexibility				
				Index				
1.	C-1	2	9.08508	4.35585	-0.6055			
2.	C-8	6	8.80641	4.81511	-0.62754			
3.	C-9	5	8.84231	4.79336	-0.62415			
4.	F-10	6	8.95715	5.60504	-1.0906			
5.	F-2	3	9.50462	5.16499	-1.0719			
6.	F-9	7	8.99152	5.62994	-1.0899			
7.	L-10	8	8.95337	6.05495	-1.009			
8.	L-11	7	8.92409	6.04094	-0.90853			
9.	L-3	4	9.34309	5.60182	-0.99644			
10.	M-10	7	9.01644	6.04624	-1.3223			

Table 8(c): Activity Predictions for the non hepatotoxic hits

S. No.	Comp.	Predicted Biological Activity for Hypothetical Compounds							
		S. Aureus	B.Subtilis	Klebsiella	Proteus Vulgaris				
1.	C-1	17.42	23.83	22.86	26.12				
2.	C-8	19.96	19.12	26.12	13.92				
3.	C-9	17.29	19.02	25.33	16.98				
4.	F-10	15.92	20.37	27.01	12.37				
5.	F-2	15.06	20.11	22.92	21.58				
6.	F-9	17.89	22.22	27.39	9.35				
7.	L-10	17.42	20.61	27.93	6.59				
8.	L-11	15.80	20.39	27.52	9.98				
9.	L-3	13.37	20.28	24.10	25.68				
10.	M-10	16.22	21.27	28.41	8.02				

	C-1	C-8	C-9	L-3	L-10	L-11	M-10	F-2	F-9	F-10
Descriptor										
ALOGP98	2.13	3.24	3.04	4.25	5.37	5.16	4.85	3.07	4.19	3.98
FPSA	88.71	88.71	88.71	97.6	97.6	97.6	88.72	88.7	88.7	88.7
AQ.SOL.LOG. LEV	2	2	2	1	1	1	1	2	1	2
BBB.LOG.LVL	3	3	3	4	4	4	4	3	2	2
CYP2D6	0	0	0	0	0	0	0	0	0	0
CYP2D6.PROB	0.40	0.36	0.23	0.27	0.28	0.2	0.26	0.26	0.26	0.26
HEPATOTOX	0	0	0	0	0	0	0	0	0	0
HEPATOTOX. PROB	0.40	0.50	0.40	0.39	0.40	0.36	0.48	0.38	0.39	0.371
HIA.FABS. LEV	0	0	0	0	2	1	0	0	0	0
HIA.FABS.T2	1	2.1	1.8	5.5	9.5	8.7	6.11	1.81	4.09	3.52
PROT.BIND. LEV	1	2	2	1	2	2	1	1	2	2
PROT.BIND. LEV.LOG	0	0	0	1	2	2	1	0	1	0
HBOND. ACCEPTOR	7	7	7	8	8	8	7	7	7	7
ALERT	False	False	False	False						
HBOND.DONOR	1	1	1	1	1	1	1	1	1	1
ALERT	False	False	False	False						
MLOGP.ALERT	False	False	False	False	False	False	True	False	False	False
WEIGHT. ALERT	False	False	False	False	False	False	True	False	False	False
RULE.OF.FIVE	False	False	False	False	False	False	True	False	False	False
ALERT	0	0	0	0	0	0	2	0	0	0

 Table 8(d): ADME profile of non hepatotoxic hits

Table 9: Standard Drug ADME Profile

	Ciprofloxacin	Lomefloxacin	Ofloxacin	Sparfloxacin
Descriptor				
ALOGP98	1.230002	1.877601	1.661402	1.649402
FPSA	74.9323	74.9323	74.4047	101.4723
AQ.SOL.LOG.LEV	3	3	3	2
BBB.LOG.LVL	3	3	3	3
CYP2D6	0	0	0	0
CYP2D6.PROB	0.386139	0.39604	0.465347	0.39604
HEPATOTOX	0	0	0	0
HEPATOTOX. PROB	0.231788	0.311258	0.344371	0.324503
HIA.FABS. LEV	0	0	0	0
HIA.FABS.T2	0.625367	0.227126	0.295176	2.12015
PROT.BIND. LEV	0	0	0	0
PROT.BIND.LEV.LOG	0	0	0	0
HBOND. ACCEPTOR	6	6	7	7
ALERT	False	False	False	False
HBOND. DONOR	2	2	1	4
ALERT	False	False	False	False
MLOGP. ALERT	False	False	False	False
WEIGHT. ALERT	False	False	False	False
RULE.OF.FIVE	0	0	0	0
ALERT	False	False	False	False

Acknowledgement

We are thankful to Gokula Education Foundation for providing all the facilities for carrying out this research.

Abbreviations:

ALOGP98: Hydrophobhicity Parameter, FPSA: Fast Polar Surface Area, AQ.SOL.LOG: Log value of Aqueous solubility, AQ.SOL.LOG.LEV: Predicts Aqueous solubility level, BBB.LOG.LVL: Predicts blood-brain-barrier penetration level, CYP2D6: Predicts inhibition or non inhibition of CYP450 2D6 enzyme, CYP2D6.PROB: A scoring function that is a sum of predicted values and CYP2D6 model, HEPATOTOX: Predicts hepatotoxicity or nonhepatotoxicity, HEPATOTOX.PROB: A scoring function that is sum of predicted values of hepatotoxicity model, HIA.FABS.LEV: Predicts passive human intestinal absorption level,

HIA.FABS.T2: The Mahalanobis distance for the compound in the FPSA, ALogP98 plane,

PROT.BIND.LEV: Predicts Plasma protein binding levels, RULE.OF.FIVE: It's a Lipinski Rule (turns "True" for orally inactive molecules and "False" for orally active molecules in the software).

References:

- Perez MAC, Garcia A. R, Teruel CF, Alveraz IG, Sanz MB., A topological- substructural molecular design (TOPS-MODE) approach to determining pharmacokinetics and pharmacological properties of 6-fluoroquinolone derivatives, European Journal of Pharmaceutics and Biopharmaceutics 2003, 56: 197-206.
- Xia Y., Yang Z.Y., Xia P., Hackl T., Hamel E, Mauger A., Jui-Hong W.V. and Lee K. H., Antitumor agents. 211. Fluorinated 2-phenyl-4quinolone derivative as antimitotic antitumor agents, J. Med. Chem., 2001, 44: 3932-3936.
- Kini S. And Gandhi A. M., Novel 2-pyrazoline derivative as potential anti-bacterial and antifungal agents,., Indian J. Pharm Sci., 2008 70, 105-108.

- 4. B.V Suma, Rochani A. K., C.H.S. Venakatarmana., Judy Jays., V. Madhavan., Synthesis, characterization, invitro antibacterial, anti-inflammatory evaluations of novel 4quinolone containing pyrazolidinedione derivatives, International Journal of ChemTech Research., 2010, 2, 2156-2162.
- Leyva E, Monreal E, Hernandez A. Synthesis of fluoro-4-hydroxyquinoline-3-carboxylic acids by the Gould-Jacobs reaction. Journal of Fluorine Chemistry, 1999, 94, 7-10.
- Mumtaz MM, Knauf LA, Reisman DJ, Peiranoa WB, DeRosaa CT, Gombar VK, Enslein K, Carterb JR, Blake BW, Huqueb KI, Ramanujam VMS., Assessment of effect levels of chemicals from quantitative structure-activity relationship (QSAR) models.I. Chronic lowest-observedadverse-effect level (LOAEL). Toxicology Letters, 1995, 79, 131-143.
