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Abstract : The comparative analysis of growth regulating activity of new synthetic low 

molecular weight heterocyclic compounds (LMWHC), derivatives of pyrimidine, and plant 

hormones auxins IAA(1H-Indol-3-ylaceticacid) and NAA(1-Naphthylaceticacid) on vegetative 
growth of tomato(Solanum lycopersicum L.)cultivar Fakel was conducted in the laboratory 

conditions. Our study showed that synthetic LMWHC, derivatives of pyrimidine used at the 

concentration 10
-9

M demonstrated high auxin-like regulating activity on growth of tomato 
seedlings during the 8 weeks. The morphometric parameters of shoots and roots on the 8

th
-

week-old tomato seedlings grown in perlite moistened with solutions of synthetic LMWHC, 

derivatives o f  pyrimidine used at the concentration 10
-9
M were similar or higher to the 

morphometric parameters of shoots and roots on the 8
th
-week-old tomato seedlings grown in 

perlite moistened with distilled water (control) or solutions of plant hormones auxins IAA and 

NAA used at the same concentration 10
-9

M on average: to 21 - 30 % - for length of shoots, to 8 

- 80 % - for average shoot mass, to 10 - 20 % - for length of main root, to 10 – 46 % - for 
average root mass, respectively. It was found that the plant growth regulating activity of these 

compounds depended on different substituents in the chemical structure of heterocyclic 

compounds. The obtained results proved the possibility of practical application of synthetic 

LMWHC, derivatives of pyrimidine as new effective regulators for vegetative growth of 
tomato(Solanum lycopersicum L.)cultivar Fakel. 

Key words : tomato (Solanum lycopersicum L.), plant growth regulators, synthetic low 
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Introduction 

An actual problem for the modern agriculture is the development of new plant growth regulators to 

improve growth during the growing season and increase the yield of tomato (Solanum lycopersicum L.), which  
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is one of the main food crops cultivated in different countries [1]. According to the National Nutrient Database 

of the US Department of Agriculture, tomato fruit contains important for human health dietary nutrients, 

biologically active compounds and phytochemicals [2]. The use of fresh tomato fruit and tomato food products 
in human diet food reduces the risk of chronic diseases, such as cancer, cardiovascular and some age-related 

diseases[3 – 9]. 

The low resistance of tomato plants to unfavorable abiotic and biotic stress-factors and diseases caused 
by pathogens and parasites can lead to crop losses and reduced product quality [10 - 14]. Nowadays, plant 

hormones and natural biostimulants are widely used to improve tomato growth and productivity, and increase 

plant resistance to unfavorable abiotic and biotic stress-factors [15 - 33]. To the main disadvantages of practical 
application of traditional plant growth regulators belong low growth regulating activity when used at high 

concentrations, their storage instability and toxicity to humans, animals and environment[34- 36]. 

Currently,new synthetic low molecular weight heterocyclic compounds (LMWHC), derivatives of 

pyrimidine are proposed to be used as new effective substitutes of traditional plant growth regulators due to the 

wide specifics of their growth regulating effect on the major crops when their using at low non-toxic for human, 

animal and environment concentrations [37 - 41]. Along with the use of synthetic LMWHC, derivatives of 
pyrimidine in agriculture, they are widely used in medical practice as therapeutic agents for treatment of cancer, 

bacterial,viral, fungal, infectious and inflammatory diseases [42 - 49].  

Taking into account this fact, the promising approach is the development of new effective and 

environmentally safe plant growth regulators on the base of synthetic LMWHC, derivatives of pyrimidine to 

improve the growth and productivity of tomato. 

Our previously conducted researchers have shown that new synthetic LMWHC, derivatives of 

pyrimidine, synthesized in V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of NAS of 

Ukraine, demonstrated high growth regulating activity at very low concentrations ranging from 10
-8

Mup to 10
-

9
M on various agricultural crops [50 - 57].   

The goal of the present work is to explore the possibility of application of new synthetic LMWHC, 
derivatives of pyrimidine to improve growth and development of tomato (Solanum lycopersicum L.) cultivar 

Fakel during the vegetative stage. 

1. Materials and Methods 

1.1. Chemical structure of synthetic LMWHC and plant hormones used for bioassays 

We conducted comparative analysis of  the plant growth regulating activity of new synthetic 

LMWHC, derivatives o f  pyrimidine (compounds№1-12) and plant hormones auxins IAA(1H-Indol-3-

ylaceticacid) and NAA(1-Naphthylaceticacid)(Table 1). 

Table 1.The chemical name, structure and relative molecular mass of plant hormones auxins IAA and 

NAA, and synthetic LMWHC 

Compound 

 

Chemical structure of 

compounds 

Chemical name and relative molecular mass 

of compounds 

IAA 

 

1H-Indol-3-ylaceticacid  

 
MM=175.19 

NAA 

 

1-Naphthylaceticacid 

 

MM=186.21 

N
H

O

OH

O

OH
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1 

N

N

N

S

O

O

NH
2

CH
3

 

6-(Methanesulfonyl)imidazo[1,2-a]pyrimidin-5-

ylamine;  
 

MM=212.23 

2 

N

N O

S

O

O

N

CH
3

 

8-(Methanesulfonyl)-6-phenyl-2,6-

dihydroimidazo[1,2- c]pyrimidin-5(3H)-one;  
 

MM=291.33 

3  

N
H

O

S
N

N

CH
3

O

O

 

8-(Methanesulfonyl)-2,6-dihydroimidazo[1,2-
c]pyrimidin-5(3H)-one;   

 

MM=215.23 
 

4  

N

N O

S

O

O

OH

N

CH
3

·HCl

 

6-(2-Hydroxyethyl)-8-(methanesulfonyl)-2,6-

dihydroimidazo[1,2-c]pyrimidin-5(3H)-one 

hydrochloride;  
 

MM=295.75 

5 
N O

S
N

O

CH
3

O

NO

O

 

2-[8-(Benzenesulfonyl)-5-oxo-2,3-

dihydroimidazo[1,2-c]pyrimidin-6(5H)-yl]ethyl 
acetate;  

 

MM=363.39 

6 
N O

S
N

CH
3

O

O

N

 

8-(Benzenesulfonyl)-6-(4-methylphenyl)-2,6-

dihydroimidazo[1,2-c]pyrimidin-5(3H)-one;  
 

MM=367.43 

7 N O

S
N

CH
3

O

O

N

 

6-Benzyl-8-(methanesulfonyl)-2,6-
dihydroimidazo[1,2-c]pyrimidin-5(3H)-one;  

 

MM=305.36 

8 N

N

N

O

S

CH
3

CH
3

O

O

 

9-(Methanesulfonyl)-7-propyl-2,3,4,7-tetrahydro-

6H-pyrimido[1,6-a]pyrimidin-6-one;  

 
MM=271.34 
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9  
N

N

N

O

S

O

CH
3

O

CH
3

O

O

 

2-[9-(Methanesulfonyl)-6-oxo-3,4-dihydro-2H-

pyrimido[1,6-a]pyrimidin-7(6H)-yl]ethyl acetate; 
 

MM=315.35 

10  
N

N

N

O

S

O

CH
3

O

O

O

 

2-[9-(benzenesulfonyl)-6-oxo-3,4-dihydro-2H-
pyrimido[1,6-a]pyrimidin-7(6H)-yl]ethyl acetate;  

 

MM=377.42 

11  
N

N

N

O

S

CH
3

O

O

 

9-(Benzenesulfonyl)-7-(4-methylphenyl)-2,3,4,7-

tetrahydro-6H-pyrimido[1,6-a]pyrimidin-6-one;  
 

MM=381.46 

12  
N

N

N

NH

CH
3

P

O
O

O

CH
3

CH
3

 

Diethyl [4-(benzylamino)-5-(4-methylphenyl)-5H-
pyrrolo[3,2-d]pyrimidin-7-yl]phosphonate;  

 

MM=450.48 

 

2.2. Plant treatment and growing conditions 

Seeds of tomato(Solanum lycopersicum L.)cultivar Fakel were surface sterilized by 1 % KMnO4 solution 

for 3 min followed by treatment with 96 % ethanol solution for 1 min, and then washed three times with sterile 

distilled water. After this procedure seeds were placed in the cuvettes (each containing 25-30 seeds) in perlite 
moistened with distilled water (control), or with the solutions of synthetic LMWHC, derivatives o f pyrimidine 

used at the concentration 10
-9

M, or plant hormones auxins IAA(1H-Indol-3-ylaceticacid) and NAA(1-

Naphthylaceticacid)used at the same concentrations 10
-9
M. Afterward, tomato seeds were placed in the 

thermostat for their germination in the darkness at the temperature 23°С during 48 hours. Sprouted tomato 
seedlings were placed in the growth chamber where seedlings were grown for 8weeks at the 16/8 h light/dark 

conditions, at the temperature 24 °C, light intensity 3000 lux and air humidity 60-80 %.The comparative 

analysis of the growth parameters of tomato seedlings (i.e. length of shoots (cm), average shoot mass (g), length 
of the main root (cm), and average root mass (g)) was carried out at the end of the 8

th
week after seed 

germination according to the guideline [58]. 

2.3. Statistical Analysis  

All experiments were performed in three replicates. Statistical analysis of the data was performed using 

dispersive Student’s-t test with the level of significance at P≤0.05, the values are mean ± SD [59].  
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3. Results and discussion  

3.1. Regulating activity of synthetic LMWHC and auxins IAA and NAA on morphometric  

parameters  of tomato seedlings 

In the laboratory conditions we studied growth regulating activity of new synthetic LMWHC, 
derivatives of pyrimidine used at the concentration 10

-9
M and plant hormones auxins IAA(1H-Indol-3-

ylaceticacid) and NAA(1-Naphthylaceticacid) used at the same concentration 10
-9

M on shoots and roots growth 

of the 8
th

-week-old tomato seedlings(Solanum lycopersicumL.)cultivar Fakel. 

It was found that synthetic LMWHC, derivatives of pyrimidine showed auxin-like regulating effect on 

growth and development of shoot and root system of tomato seedlings during the 8 weeks (Fig. 1).  

 

Fig. 1. Effect of synthetic LMWHC, derivatives of pyrimidine (compounds № 1-12) and plant hormones 

auxins IAA(1H-Indol-3-ylaceticacid) and NAA(1-Naphthylaceticacid) used at the concentration 10
-9

M on 

shoots and roots growth ofthe 8
th

-week-old tomato seedlings (Solanum lycopersicum L.)cultivarFakelas 

compared with shoots and roots growth of the 8
th

-week-old tomato seedlings grown in perlite moistened 

with distilled water(control (C)) 

The conducted statistical analysis showed that the shoots and roots morphometric parameters of the 8
th

-

week-old tomato seedlings(i.e. length of shoots (cm), average shoot mass (g), length of the main root (cm), and 
average root mass (g)) grown in perlite moistened with solutions of some synthetic LMWHC, derivatives o f  

pyrimidine used at the concentration 10
-9

M were similar or higher to the shoots and roots morphometric 

parameters of the 8
th

-week-old tomato seedlings grown in perlite moistened with distilled water (control) or 
solutions of plant hormones auxins IAA and NAA used at the same concentration 10

-9
M on average: to 21 - 30 

% - for length of shoots, to 8 - 80 % - for average shoot mass, to 10 - 20 % - for length of main root, to 10 – 46 

% - for average root mass, respectively (Fig. 2 - Fig.5). 

 

Fig 2. Effect of synthetic LMWHC, derivatives of pyrimidine (compounds № 1-12) and plant hormones 

auxins IAA(1H-Indol-3-ylaceticacid) and NAA(1-Naphthylaceticacid)used at the concentration 10
-9

M on 

length of shoots (cm) on the 8
th

-week-old tomato seedlings (Solanum lycopersicumL.)cultivar Fakel as 

compared with length of shoots (cm) on the 8
th

-week-old tomato seedlings grown in perlite moistened 

with distilled water (control(C)) 
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Among synthetic LMWHC, derivatives of pyrimidine the highest regulating activity on growth of 

tomato shoots revealed the compounds № 1 and № 2. The morphometric parameters of length of shoots on the 

8
th
-week-old tomato seedlings grown in perlite moistened with solutions of the compounds № 1 and № 2 used at 

the concentration 10
-9

M were increased on average: to 21 % and 30 %, respectively, as compared with similar 

parameters on the 8
th

-week-old tomato seedlings grown in perlite moistened with distilled water (control), to 17 

% and 79 %, respectively, as compared with similar parameters on the 8
th
-week-old tomato seedlings grown in 

perlite moistened with solution of auxin IAA used at the same concentration 10
-9

M, and  to 12 % and 21 %, 
respectively, as compared with similar parameters on the 8

th
-week-old tomato seedlings grown in perlite 

moistened with solution of auxin N AA used at the same concentration 10
-9

M (Fig. 2). 

The morphometric parameters of average shoot mass (g) on the 8
th

-week-old tomato seedlings grown in 

perlite moistened with solutions of the compounds№ 1 and № 2 used at the concentration 10
-9

M were increased 

on average: to 18 % and80 %, respectively, as compared with similar parameters on the 8
th

-week-old tomato 
seedlings grown in perlite moistened with distilled water (control), and to 8 % and 25 %, respectively, as 

compared with similar parameters on the 8
th
-week-old tomato seedlings grown in perlite moistened with 

solution of auxin N AA used at the same concentration 10
-9
M (Fig. 3). 

 

Fig. 3. Effect of synthetic LMWHC, derivatives of pyrimidine (compounds № 1-12) and plant hormones 

auxins IAA and NAA used at the concentration 10
-9

M on average shoot mass (g) on the 8
th

-week-old 

tomato seedlings(Solanum lycopersicum L.)cultivar Fakel as compared with average mass of shoots (g) on 

the 8
th

-week-old tomato seedlings grown in perlite moistened with distilled water (control (C)) 

The lower regulating activity on growth of tomato shoots revealed the compounds № 5, 7, and 11. The 

morphometric parameters of average shoot mass (g) on the 8
th

-week-old tomato seedlings grown in perlite 
moistened with solutions of the compounds № 5, 7, and 11 used at the concentration 10

-9
M were increased on 

average: to 10 - 23 % as compared with similar parameters on the 8
th
-week-old tomato seedlings grown in 

perlite moistened with distilled water (control), to 9 - 22 %  as compared with similar parameters on the 8
th

-

week-old tomato seedlings grown in perlite moistened with solution of auxin I AA used at the same 
concentration 10

-9
M, and to 7 – 20 % as compared with similar parameters on the 8

th
-week-old tomato seedlings 

grown in perlite moistened with solution of auxin N AA used at the same concentration 10
-9

M (Fig. 3). 

It  was found that  a ll  synthetic LMWHC, derivatives of pyrimidine demonstrated auxin-like 

stimulating effect on growth of tomato root. The highest regulating activity on growth of tomato main root 

revealed the compounds № 4, 5, 6, 8, 9 and № 10. The morphometric parameters of length of main root on the 
8

th
-week-old tomato seedlings grown in perlite moistened with solutions of the compounds № 4, 5, 6, 8, 9 and 

№ 10 used at the concentration 10
-9

M were increased on average: to 10 - 20 %, respectively, as compared with 

similar parameters on the 8
th

-week-old tomato seedlings grown in perlite moistened with distilled water 

(control), to 14- 24 %, respectively, as compared with similar parameters on the 8
th

-week-old tomato seedlings 
grown in perlite moistened with solution of auxin IAA used at the same concentration 10

-9
M (Fig. 4). 
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Fig 4. Effect of synthetic LMWHC, derivatives of pyrimidine (compounds № 1-12) and plant hormones 

auxins IAA and NAA used at the concentration 10
-9

M on length of main root (cm) on the 8
th

-week-old 

tomato seedlings(Solanum lycopersicum L.)cultivar Fakel as compared to length of main root (cm) on the 

8
th

-week-old tomato seedlings grown in perlite moistened with distilled water (control (C)) 

The highest regulating activity to increase the mass of the root on the 8
th

-week-old tomato 

seedlings revealed the compounds № 1 and 12; the morphometric parameters of average root mass (g) on the 
8

th
-week-old tomato seedlings grown in perlite moistened with solutions of the compounds № 1 and 12 used at 

the concentration 10
-9

M were increased on average: to 16 % and 46 % as compared to similar parameters on the 

8
th
-week-old tomato seedlings grown in perlite moistened with distilled water (control) or with solution of auxin 

I AA used at the same concentration 10
-9

M, to 22 % and 52 %  as compared to similar parameters on the 8
th

-

week-old tomato seedlings grown in perlite moistened with solution of auxin N AA used at the same 

concentration 10
-9

M (Fig. 5).  

 

Fig. 5. Effect of synthetic LMWHC, derivatives of pyrimidine (compounds № 1-12) and plant hormones 

auxins IAA and NAA used at the concentration 10
-9

M on average root mass (g) on the 8
th

-week-old 

tomato seedlings(Solanum lycopersicum L.)cultivarFakel as compared with average mass of roots (g) on 

the 8
th

-week-old tomato seedlings grown in perlite moistened with distilled water (control (C)) 

The lower regulating activity on growth of tomato shoots revealed the compounds № 4, 5, 6, 8, 9, 10 

and 11. The morphometric parameters of average root mass (g) on the 8
th
-week-old tomato seedlings grown in 

perlite moistened with solutions of the compounds № 4, 5, 6, 8, 9, 10 and 11 used at the concentration 10
-9

M 
were increased on average: to 10 - 23 % as compared with similar parameters on the 8

th
-week-old tomato 

seedlings grown in perlite moistened with distilled water (control) or with solution of auxin I AA used at the 

same concentration 10
-9

M, to 15 - 30 %  as compared with similar parameters on the 8
th

-week-old tomato 

seedlings grown in perlite moistened with solution of auxin N AA used at the same concentration 10
-9

M (Fig. 
5).  

It was found that the plant growth regulating activity of synthetic LMWHC, derivatives of pyrimidine 
was varied depending on different substituents in their chemical structure. Among tested compounds the highest 

growth regulating activity showed the compound №1 –6-(Methanesulfonyl)imidazo[1,2-a]pyrimidin-5-ylamine, 
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which belongs to derivatives of dihydroimidazo[1,2-c]pyrimidine containing methylsulfonyl group in the 6 

position of  dihydroimidazo[1,2-c]pyrimidine, and the compound № 12 - Diethyl [4-(benzylamino)-5-(4-

methylphenyl)-5H-pyrrolo[3,2-d]pyrimidin-7-yl]phosphonate, which belongs to derivatives of pyrrolo[3,2-
d]pyrimidine containing benzylamino substituent in the 4 position and 4-methylphenyl substituent in the 5 

position of pyrimidine fragment. 

The high regulating activity showed the compounds№4, 5, 6, 7, 8, 9, 10 and 11,which belong to 
derivatives of dihydroimidazo[1,2-c]pyrimidine and pyrimido[1,6-a]pyrimidine. This fact is explained by the 

presence of various substituents in their chemical structure: the compound №4 –6-(2-Hydroxyethyl)-8-

(methanesulfonyl)-2,6-dihydroimidazo[1,2-c]pyrimidin-5(3H)-one hydrochloride  contains hydroxyethyl  group 
in the 6 position, the compound № 5 – 2-[8-(Benzenesulfonyl)-5-oxo-2,3-dihydroimidazo[1,2-c]pyrimidin-

6(5H)-yl]ethyl acetatecontains 2-acetoxyethylgroup in the 2 position, the compound № 6 - 8-(Benzenesulfonyl)-

6-(4-methylphenyl)-2,6-dihydroimidazo[1,2-c]pyrimidin-5(3H)-one contains 4-methylphenyl group in the 6 
position, the compound № 7 – 6-Benzyl-8-(methanesulfonyl)-2,6-dihydroimidazo[1,2-c]pyrimidin-5(3H)-one 

contains 6-Benzyl group in 6 position of dihydroimidazo[1,2-c]pyrimidine, the compound № 8 - 9-

(Methanesulfonyl)-7-propyl-2,3,4,7-tetrahydro-6H-pyrimido[1,6-a]pyrimidin-6-one does not contain any 

substituent in the 6 position, the compound № 9 - 2-[9-(Methanesulfonyl)-6-oxo-3,4-dihydro-2H-pyrimido[1,6-
a]pyrimidin-7(6H)-yl]ethyl acetate contains 2-acetoxyethyl group in the 2 position and methanesulfonyl group 

in 9 position, the compound № 10 - 2-[9-(benzenesulfonyl)-6-oxo-3,4-dihydro-2H-pyrimido[1,6-a]pyrimidin-

7(6H)-yl]ethyl acetate contains 2-acetoxyethyl group in the 2 position and benzenesulfonyl group in the 9 
position, the compound № 11 - 9-(Benzenesulfonyl)-7-(4-methylphenyl)-2,3,4,7-tetrahydro-6H-pyrimido[1,6-

a]pyrimidin-6-one  contains 4-methylphenyl group in the 7 position and benzenesulfonyl group in the 9 position 

of the pyrimidine fragment. 

Probably, the high plant growth regulating activity of synthetic LMWHC, derivatives of pyrimidine or 

synthetic analogs of auxin could be explained by their auxin-like inducing effect on plant growth and 

development, and plant cell metabolism [60 - 63]. It is possible to assume that the molecular mechanisms of 
action of these synthetic LMWHC, derivatives of pyrimidine might be associated with their regulatory action 

(by analogy with plant hormone auxin) on the network of key auxin-binding proteins (ABPs) that may be the 

auxin receptors involved in auxin signalling and transport, network of auxin response transcription factors 
(ARFs)that are DNA-binding proteins, which recognize and bind to auxin responsive cis-acting promoter 

elements(AuxREs) in early/primary auxin response genes, andnetwork of transcription factors that bind to 

promoter elements in genes encodingprotein-enzymes responsible for plant cell division and extension [64 - 

80].  

Otherwise, there could be an alternative mode of action related to the inhibitory effect of synthetic 

LMWHC, derivatives of pyrimidine or synthetic analogs of auxin on activity of a key enzyme IAA-oxidase, 
which is involved in the enzymatic destruction (degradation) of auxin [81]. As a result, the level of 

endogenously synthesized auxin IAA is increased in the plant cells, and auxin transport, perception 

and signalling are restored leading to improved plant cell division and extension that are the main processes 
ofplant growth and development [64 – 80]. 

In support of the bottom concept indicate published works [82, 83], which showed the effect of 
exogenously applied synthetic analogs of auxin on decrease in activity of IAA-oxidase and vice versa on 

increase in level of synthesis of endogenous auxin IAA in plant cells.  

The authors of the work[84] also suggested that synthetic auxins might affect the level of synthesis of 
endogenous auxin modifying directly synthesis of enzyme IAA-oxidase and indirectly through effectors of 

IAA-oxidase.  

Similar studies were conducted in a work [85] that showed that synthetic 2-R substitutedbenzothiazole 

derivatives demonstrated dominant auxine-like plant growth promoting activity.Based on obtained results, 

showing that the plant growth promoting activity of synthetic benzothiazole compounds can be correlated with 
the activity of IAA synthetase, the authors have proposed that the mode of action ofsynthetic 2-R 

substitutedbenzothiazole derivatives as auxine-like substances is due to their possible regulation of synthesis or 

degradation of endogenous auxin indole-3-acetic acid (IAA) in plants. 
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The assumptions discussed in the works [82-85] are consonant with our early published work [86], 

which testified in favor of theindirect, mediated through endogenous phytohormonesaction of synthetic 

LMWHC, derivatives of pyridine – lutidine N-oxide (Ivin) and pyrimidine –6-methylthiouracil(Methyur)on 
plant cell extension, and published works of other authors [87 - 92]thatshowed the effect of exogenously 

applied synthetic multi-dimensional plant growth regulator Thidiazuron (TDZ; N-phenyl-1,2,3-thidiazole-

5ylurea) on increase in concentrations of endogenous cytokinins, auxin, ethylene and ABA in plant cells.  

Authors of work[91]also suggested that the powerful cytokinin-like regulatory effect of TDZ on plant 

grow this associated with its influence on metabolism of endogenous plant hormones, either directly or 

indirectly through prevention the breakdown of endogenous purines by inhibiting cytokinin oxidase, due to 
which plant cell division and regeneration occur. 

4.Conclusion 

 The regulating activity of synthetic LMWHC, derivatives of pyrimidine on growth of tomato (Solanum 

lycopersicum L.)cultivar Fakel during the 8 weeks was studied. It was found that the derivatives of pyrimidine 

used at the concentration 10
-9

M demonstrated the auxin-like plant growth regulating activity, which was similar 
or higher of the activity of plant hormones auxins IAA and NAA. The obtained morphometric parameters of 8

th
-

week-old tomato seedlings grown in perlite moistened with solutions of synthetic LMWHC, derivatives o f  

pyrimidine used at the concentration 10
-9

M were similar or higher than similar parameters of 8
th
-week-old 

tomato seedlings grown either in perlite moistened with distilled water (control) or solutions of plant hormones 

auxins IAA and NAA used at the same concentration 10
-9
M.The plant growth regulating activity of synthetic 

LMWHC, derivatives of pyrimidine was varied depending on different substituents in their chemical structure. 

The obtained results proved the possibility of practical application of synthetic LMWHC, derivatives of 
pyrimidine as new effective regulators to improve growth of tomato(Solanum lycopersicum L.)cultivar Fakel 

during the vegetative stage. 
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