

International Journal of ChemTech Research CODEN (USA): IJCRGG, ISSN: 0974-4290, ISSN(Online):2455-9555 Vol.12 No.02, pp 28-36, 2019

Synthesis and Characterization of $Ce_{0.9}Sm_{0.05}Pr_{0.05}O_{1.95}$ as a solid electrolyte for intermediate-temperature solid oxide fuel cell

Lemessa Asefa Eressa¹*, PV Bhaskara Rao²

^{1,2}Wollega University, Department of Physics, Nekemte, Ethiopia

Abstract : Co-doped sample of electrolyte $Ce_{0.9}Sm_{0.05}Pr_{0.05}O_{1.95}$ have been prepared by Solgel method and characterized to explore its use as a solid electrolyte for intermediate temperature solid oxide fuel cells (IT-SOFCs). The crystal structure, microstructure, and ionic conductivity have been determined by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Energy dispersive X-ray spectrometer (EDX), Raman Spectroscopy (Raman), and impedance spectroscopy, respectively. The XRD result reveals that the sample is single phase with cubic fluorite-type structure. The relative density of sample sintered at 1400^oC isabout98% of theoretical density. The average grain size of $Ce_{0.9}Sm_{0.05}Pr_{0.05}O_{1.95}$ sample found from SEM image is 451.4nm. The Raman spectra result showed formation of two distinctive peaks in the $Ce_{0.9}Sm_{0.05}Pr_{0.05}O_{1.95}$ lattice. The peak at lower wavenumber (463) cm⁻¹) can be attributed to F_{2g} vibration mode (O-Ce-O) of the fluorite-like structure of pure CeO₂. Besides, the peak at higher wavenumber (564) cm⁻¹ can be ascribed to the oxygen vacancies extrinsically introduced into $Ce_{0.9}Sm_{0.05}Pr_{0.05}O_{1.95}$ for maintaining the charge neutrality. The ionic conductivity and activation energy of $Ce_{0.9}Sm_{0.05}Pr_{0.05}O_{1.95}$ found at 500°C was(5.95 x10⁻³S/cm, Ea = 0.64eV) respectively. All the results confirmed that $Ce_{0.9}Sm_{0.05}Pr_{0.05}O_{1.95}$ is a promising alternative electrolyte for intermediate temperature solid oxide fuel cell (IT-SOFC) applications. Key words : IT-SOFCS, electrolyte, $Ce_{0.9}Sm_{0.05}Pr_{0.05}O_{1.95}$, ionic conductivity.

Lemessa Asefa Eressa et al / International Journal of ChemTech Research, 2019,12(2): 28-36.

DOI= http://dx.doi.org/10.20902/IJCTR.2019.120205
