

International Journal of ChemTech Research CODEN (USA): IJCRGG, ISSN: 0974-4290, ISSN(Online):2455-9555 Vol.11 No.09, pp 58-68, 2018

Phytochemical Investigation and Fingerprinting of *Gymnosporia spinosa* Leaves Using Sophisticated Chromatographic Techniques

Padmani Ajay J, Bhagat Keyuri S, Savalia Vaibhavi B, Pandya Devang J*

School of Pharmacy, RK University, Rajkot, India

Abstract : *Gymnosporia spinosa* leaves are often consumed by Indians for treatment of liver diseases. They also possess analgesic, anti-inflammatory and anticancer activity, along with uses in gastrointestinal, tooth and eye disorders. The present work focuses on developing an HPTLC fingerprint of *G. Spinosal* eaves and detecting phytochemical constitution of the same using GC-MS. Methanolic extract of the leaves was prepared by maceration. This extract was used to develop a suitable mobile phase for fingerprinting. After mobile phase development involving several pilot TLC, the mobile phase showing distinct spots in TLC was found to be Chloroform: Methanol (9:1). The extract was further subjected to HPTLC fingerprinting where R_f and Area Under Curve were calculated. The extract was also analyzed using GC-MS. HPTLC fingerprinting of the methanolic extract showed five peaks at 254nm and eight peaks at 366nm, whereas GC-MS study structurally identified five phytoconstituents. This work provides simple techniques for the Pharma industry which can be utilized for standardization, quality control and detection of adulteration of *Gymnosporia spinosa* leaf formulations. **Keywords :** Celastraceae, GC-MS, *Gymnosporia montana*, HPTLC, *Maytenus emarginata, Maytenus senegulensis*, Quality control.

Introduction

Gymnosporia spinosasyn. Gymnosporia montana, Maytenus emarginata, Maytenus senegulensis (Family – Celastraceae) leaves are found commonly across India and are known as Vyaghrapaadi (Sanskrit) and Vikdo (Gujarati)^{1,2}. They are said to possess potent hepatoprotective activity along with anti-inflammatory, anticancer and analgesic potential. They are also used in gastro-intestinal, teeth and eye-related disorders¹⁻⁷. The present work focuses on developing an HPTLC fingerprint of *G. spinosa* leaves as well as its phytochemical analysis using GC-MS (Fig. 1).

Pandya Devang J *et al* /International Journal of ChemTech Research, 2018,11(09): 58-68.

DOI= <u>http://dx.doi.org/10.20902/IJCTR.2018.110909</u>

Figure 1. Gymnosporia spinosa leaves

Experimental⁸⁻²²

Crude drug material

G. spinosa leaves were collected from medicinal garden of RK University, in July 2015 and authenticated by Dr. Vivek Vegda, Botanist, School of Science, RK University.

Extraction

50g dry powder of *G. spinosa* leaves was macerated with 200ml methanol for 24h at room temperature. Methanolic extract was filtered and evaporated on water bath at 60° C to obtain the dried extract.

Mobile phase development

Pilot TLC were developed for methanol extract by preparing various mobile phases using various solvents like toluene, chloroform, n-butanol, ethyl acetate, methanol and distilled water. After observing the pilot results, further TLC were developed by adding ammonia & ethyl acetate for removal of tailing.

HPTLC

HPTLC fingerprinting of methanolic extract was performed in Dept. of Pharmaceutical Sciences, Saurashtra University, Rajkot, Gujarat, using the mobile phase Chloroform: Methanol (9:1), as it gave most appropriate TLC fingerprint, under the following conditions...

Stationary phase: Silica gel 60 F 254 (E. Merck KGaA) Sample application: CAMAG Linomat 5 Detection: CAMAG TLC Scanner 3 Lamp: D2 & W Measurement type: Remission Measurement mode: Absorption Optical filter: Second order Data filtering: Savitsky-Golay 7

Four tracks of same extract at different concentrations were run for the HPTLC fingerprinting and scanned under UV 254nm and UV 366nm.

Mobile phase development

Pilot TLC were developed for methanol extract by preparing various mobile phases using various solvents like toluene, chloroform, n-butanol, ethyl acetate, methanol and distilled water. After observing the pilot results, further TLC were developed by adding ammonia & ethyl acetate for removal of tailing.

GC-MS analysis

The methanolic extract was analyzed for its phytochemical constitution using GC-MS (Agilent) at Bioresearch & Characterization Centre, RK University, Rajkot, Gujarat.

Results and Discussion

Five peaks were detected at 254nm (Table 1, Fig. 2, 3) and eight peaks were detected at 366nm (Table 2, Fig. 4, 5) upon HPTLC of methanolic extract of *G. spinosa*leavesusing mobile phase Chloroform: Methanol (9:1).

Table 1. Rf & Area Under Curve of HPTLC of methanol extract at 254nm

Peak	Max R _f	Area	Area %
1	0.02	19810.1	80.07
2	0.16	450.0	1.82
3	0.47	301.7	1.22
4	0.59	3699.6	14.95
5	0.79	480.0	1.94

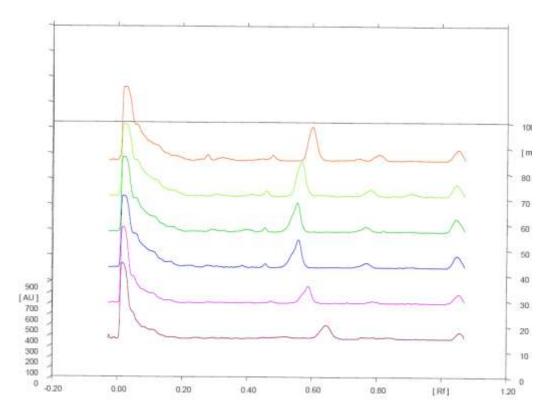


Figure 2: HPTLC 2Ddensitometric superimposable chromatogram of methanol extract at 254nm (chloroform: methanol 9:1)

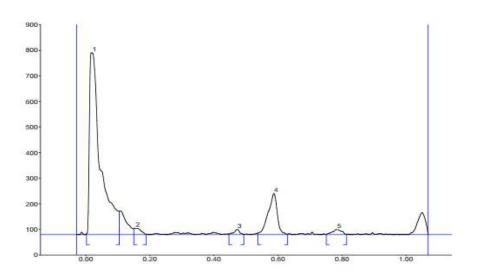


Figure 3: HPTLC chromatogram of methanol extract at 254nm(chloroform: methanol 9:1)

Peak	Max Rf	Area	Area %
1	0.02	14955.6	45.40
2	0.12	180.7	0.55
3	0.28	1614.1	4.90
4	0.40	762.3	2.31
5	0.48	397.4	1.21
6	0.59	12777.3	38.76
7	0.64	146.3	0.44
8	0.79	2123.6	6.44

Table 2. $R_{\rm f}$ & Area Under Curve of HPTLC of methanol extract at 366nm

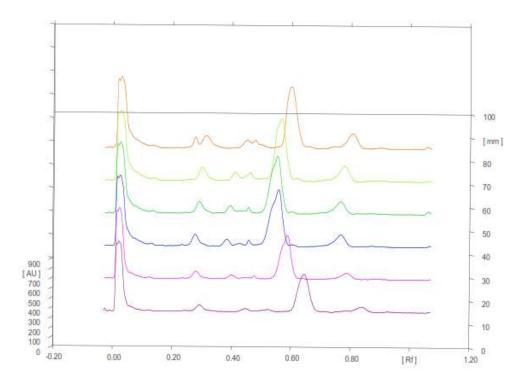
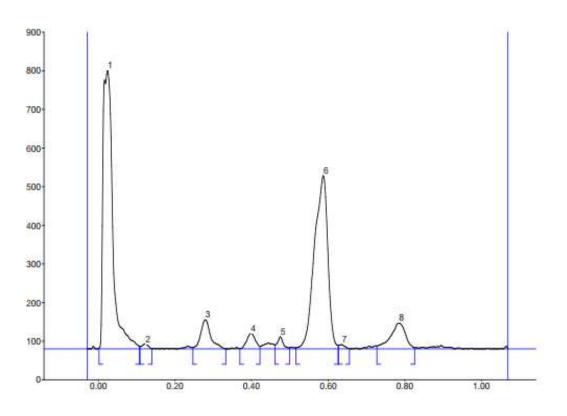



Figure 4: HPTLC 2D Densitometric superimposable chromatogram of methanol extract at 366nm (chloroform: methanol 9:1)

Figure 5: HPTLC chromatogram of methanol extract at 366nm (chloroform: methanol 9:1)

In the GC-MS analysis of the methanolic extract, five phytoconstituents were structurally identified: α -Amyrin, β -Amyrin, Dihydrotachysterol, Friedelan-3-one and 3,7,11,15-Tetramethyl-2-hexadecen-1-ol.

Phytoconstituent	Retention Time	Height	Area	Area%
3,7,11,15-Tetramethyl-2-hexadecen-1-ol	28.889	167922.37	483720.93	3.37
β-Amyrin	50.266	56339.8	334991.38	2.33
α-Amyrin	52.354	1532763.94	14355648.5	100
Friedelan-3-one	53.487	203985.95	2908056.61	20.26
Dihydrotachysterol	56.583	128282.82	675732.38	4.71

Table 3. GC-MS data of Methanolic extract

Table 4. m/z vs. Abundance of 3,7,11,15-Tetramethyl-2-hexadecen-1-ol

m/z	Abund
55.1	6147.76
57.1	5765.22
67.1	4178.82
68.1	4681.53
69.1	4921.87
71.1	8142.45
81.1	6827.58
82.1	5043.07
95.1	4342.79
123.1	5249.11

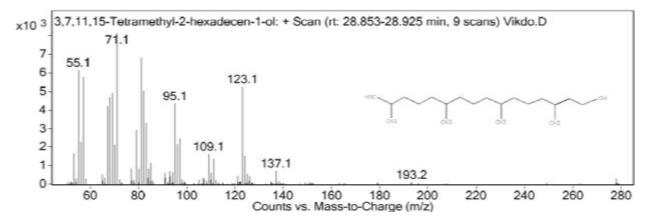


Figure6: Counts vs. m/z of 3,7,11,15-Tetramethyl-2-hexadecen-1-ol

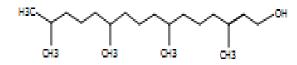


Figure 7: 3,7,11,15-Tetramethyl-2-hexadecen-1-ol

Table 5. m/z vs. Abundance of β-Amyrin

m/z	Abund
55.1	19477.63
69.1	20212.53
91.1	16839.43
93.1	16558.16
95.1	19722.32
105.1	18786.46
119.1	19105.78
189.2	19905.93
203.2	60169.76
218.2	93116.83

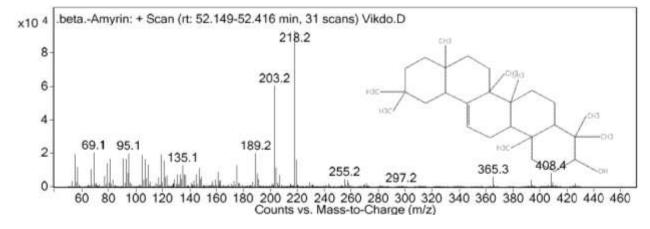
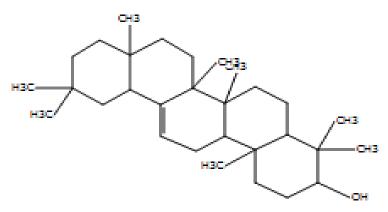



Figure 8: Counts vs. m/z of β-Amyrin

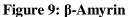


Table 6. m/z vs. Abundance of α-Amyrin

m/z	Abund
55.1	3418.71
67.1	2755.08
81.1	3328.15
91.1	2913.87
93.1	3659.66
107.1	3660.96
109.1	2796.04
121.1	3521.02
189.2	3833.97
218.2	5058.13

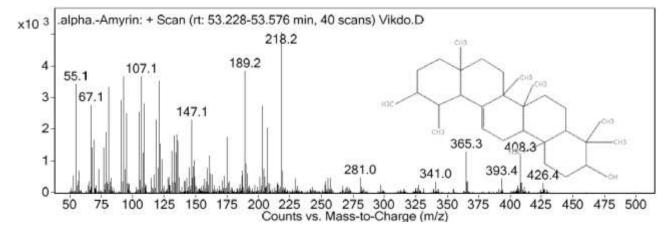
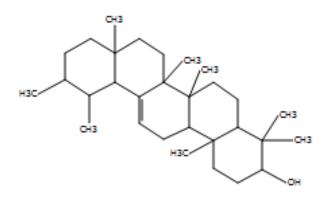



Figure 10: Counts vs. m/z of α-Amyrin

Figure 11: α-Amyrin

Table 7. m/z vs. Abundance of Friedelan-3-on	Table 7	7. m/z vs	. Abundance	of Friedelan-3-on
--	---------	-----------	-------------	-------------------

m/z	Abund
67.1	1901.8
69.1	2694.46
73.1	1742.33
81.1	2522.14
95.1	2167.32
109.1	2347.58
121.1	1591.11
123.1	2212.21
207	2665.56
281	1570.87

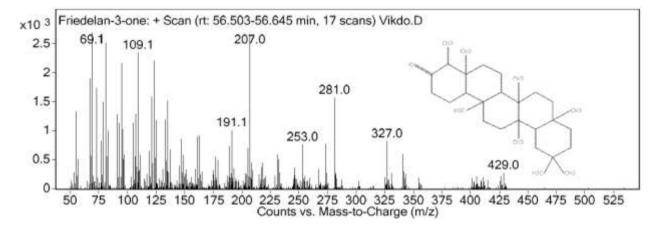


Figure 12: Counts vs. m/z of Friedelan-3-one

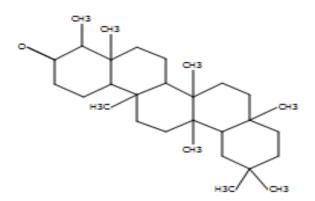
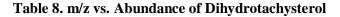



Figure 13: Friedelan-3-one

m/z	Abund
55.1	808.44
57.1	497.3
73	764.15
91.1	502.23
95.1	583.3
105	493.22
107.1	665.55
147.1	501.76
207	549.23
381.3	501.62

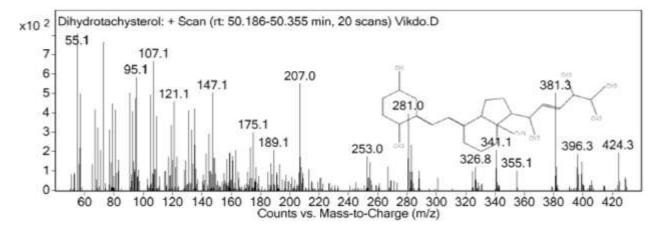


Figure 14: Counts vs. m/z of Dihydrotachysterol

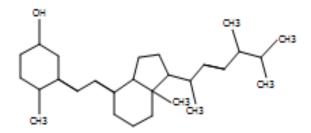


Figure 15: Dihydrotachysterol

The present work can be helpful to the herbal industry as an important quality control and standardization parameter of *G. spinosa* leaves, since they have shown tremendous potential in various diseases, specifically against liver disorders like jaundice, wherein they are popularly utilized⁴⁻⁶. This work can be specifically useful for authentication of raw material of the leaves and in detection of its adulteration, which will ultimately benefit the people who consume *G. spinosa* leaf formulations.

References

- 1. Kirtikar K. R. and Basu B. D., Indian Medicinal Plants Vol. IV, International Book Distributors, New Delhi, 2005, 577.
- 2. Khare C. P., Indian medicinal plants: An illustrated dictionary, Springer, New York, 2007, 387.
- 3. Sagwan S., Rao D. V.and Sharma R. A., *Maytenus emarginata* (WILLD.): a promising drug for cancer therapy, Asian J Pharm Clin Res, 2011, 4(3): 9-12.
- 4. De S., Ravishankar B. and Bhavsar G. C., Evaluation of *Gymnosporia montana* for hepatoprotective and anti-inflammatory activities, Indian Drugs, 1991, 29(3):107.
- 5. De S., Ravishankar B. and Bhavsar G. C., An investigation on the hepatoprotective activity of *Gymnosporia Montana*, Planta Med, 1994, 60(4): 301-4.
- 6. Patel P.B., Patel T. K., Shah P., Baxi S. N., Sharma H. O., Tripathi, C. B., Protective Effect of Ethanol Extract of *Gymnosporia montana*(Roth) Bemth. in Paracetamol-induced Hepatotoxicity in Rats,Ind J Pharm Sci, 2010,72(3) 392-6.
- 7. Dhuru B., Patel B., Lakshmi B. and Zaveri M. To evaluate anti-inflammatory and analgesic activity of leaf of *Gymnosporia montana* a native of Gujarat. Am J PharmTech Res, 2011, 1(3):227-37.
- 8. Rex Jeya Rajkumar S., Sreeraj Kuruppilakathmanikandan, Muthukumar Nadar M.S.A., Qualitative Phytoconstituent Profile of *Lobelia trigona* Roxb extracts, International Journal of Pharm Tech Research, 2015, 8(10): 47-50.
- 9. Hemlata, Savita Upadhyay, Shailendra K. Saraf, Development and Validation of Stability Indicating RP-HPLC Method for Simultaneous Estimation of NSAIDS-Antiulcer Agent Combination, International Journal of Pharm Tech Research, 2016, 9(8): 288-300.
- 10. V.N. Kalpana, V. Devi Rajeswari, Phytochemical and Pharmacological investigation of an indigenous medicinal plant *Leucas aspera*, , International Journal of Pharm Tech Research, 2016, 9(8): 399-407.
- 11. Agus Kurniawan, Fadlina Chany Saputri, Rissyelly, Islamudin Ahmad, and Abdul Mun'im, Isolation of Angiotensin Converting Enzyme (ACE) Inhibitory Activity Quercetin from *Peperomia pellucida*, International Journal of Pharm Tech Research, 2016, 9(7): 115-21.
- 12. Meena S, Kaniraja S, Shakila R, Shree Devi M.S, Sathiya Rajeswaran P, Standardization of a Polyherbal Formulation Vajravalli Chooranam, International Journal of Pharm Tech Research, 2016, 9(7): 191-9.
- 13. S. Gayathri Devi and R. Dhamotharan, *Caralluma fimbriata* An Important Medicinal Plant: A Review of Its Traditional Uses, Phytochemistry and Pharmacological Properties, International Journal of Pharm Tech Research, 2016, 9(6): 223-30.
- 14. Mohamed E. Ibrahim, Essential oils Isolated From Leaves of Egyptian *Verbena triphylla* L Herb Using Different Extraction Methods, International Journal of Pharm Tech Research, 2016, 9(5): 1-7.
- 15. Manisha Bhatti, A Research Article on Phytochemical and Physicochemical Evaluation of Leaves & Stems of Kalanchoe Crenata (Adrews) Haw, International Journal of Pharm Tech Research, 2016, 9(4): 261-5.
- 16. Sepideh Nourian, Ali Mohammadi Sani, Ebrahim Golmakani, Peyman Feizi, Katayoun Roghani, Determination of Antioxidant activity by High Performance Liquid Chromatography, Phenolic and Flavonoid contents of *Vincetoxicum nigrum*, International Journal of Pharm Tech Research, 2016, 9(3): 150-7.
- 17. M. Duraisankar and A. David Ravindran, Identification of *Curcuma Longa* Rhizomes by Physicochemical and TLC Fingerprint Analysis, International Journal of Pharm Tech Research, 2015, 8(6): 198-205.
- 18. Lakkad Hardik A, Pandya Devang J, HPTLC Fingerprinting of *Pandanus tectorius* Leaves as a Quality Control Parameter, International Journal of Pharm Tech Research, 2015, 8(3): 360-5.

- 19. Raval Chirag J, Pandya Devang J, HPTLC Fingerprinting of *Scaevola frutescens* Leaves as a Quality Control Parameter, International Journal of Pharm Tech Research, 2015, 8(3): 366-70.
- 20. Afandi Saputra, Sri Andayani, Happy Nursyam, Total Quantity of Phenol and Isolation Methanol Tannin Extract of Red Betel Leaf (*Piper crocatum*), International Journal of Pharm Tech Research, 2016, 9(7): 146-53.
- 21. Ihsanul Hafiz, Rosidah, Jansen Silalahi, Antioxidant and Anti-inflammatory Activity of Pagoda Leaves (*Clerodendrum paniculatum* L.) Ethanolic Extract in White Male Rats (*Rattus novergicus*), International Journal of Pharm Tech Research, 2016, 9(5): 165-70.
- 22. Isnindar, Subagus Wahyuono, Sitarina Widyarini, Yuswanto, Optimization Method of Caffeine Isolation of Merapi Green Coffee Beans, International Journal of Pharm Tech Research, 2016, 9(5): 255-9.
