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Abstract : Continuous Stirred Tank Reactor (CSTR) here is considered as a non linear process. 

CSTR is widely used in many industrial sectors like chemical industries, pharmaceutical, 

drugs manufacturing, waste water treatment plants and etc.. Due to changes in process 
parameters the accuracy of final product can be reduced. In order to get the product in desired 

concentration and temperature, faults developed in CSTR during the chemical reaction need to 

be analysed. If not, those faults may lead to degrade the performance of the system. For this 

purpose, there are various fault detection methods are to be considered. Among the methods, 
the Principal Component Analysis (PCA) can be proposed to detect faults in CSTR. PCA is 

one of the data based fault detection methods. PCA statistics like Hotelling T
2
 statistic and 

Square Prediction Error (SPE) or Q statistics are used for detecting faults in the process. By 
detecting various faults, the performance of the process can be improved. 

Keywords : Fault detection, Principal component analysis, T
2
 and Q statistics, CSTR model. 

 

Introduction 

 In most chemical plants, monitoring and fault diagnosis are becoming increasingly important safe 

operation and quality in the process. The Continuous Stirred Tank Reactor (CSTR) system is highly nonlinear, 

exothermic and irreversible process. In CSTR, when the reactants are added into the tank, the stirrer will stir the 
reactants to give desired product. Once the equipment is running, it is usually operated at steady state and 

designed to achieve well mixing. The CSTR also known as vat or back mix reactor, is a common ideal reactor 

type in chemical engineering. A CSTR refers to a model used to estimate the key unit operation variables when 
using a continuous agitated tank reactor to reach a specified output. It is widely used in the organic chemicals 

industry for medium and large scale production. The reactor is operated by three control loops that will regulate 

the outlet temperature and the inlet flow rate of the reactor tank level. During the process, the heat will be 

generated and hence the  heat of reaction can be removed by a coolant medium that flows through a jacket 
around the reactor. During the CSTR process, the faults may occur which further leads to inaccurate result. 

Figure 1 shows a continuous stirred tank reactor. 
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Figure 1 Continuous Stirred Tank Reactor 

Mathematical Modelling Of CSTR 

 Mass and energy balance equation of CSTR  [6]
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where ko is the rate constant of the reaction, E defines the activation energy of the reaction, R is the gas 
constant, F defines the feed flow rate, FC is the inlet coolant flow rate, V defines the reactor volume, ∆Hr×n is 

the rate of reaction, T0 is the temperature at the inlet, T is the reactor temperature, Tcin defines the coolant inlet 

temperature, CAO and CA are the concentration of inlet and reactor concentration of liquid A, respectively and ρ, 

ρc,Cp and Cpc are the densities and specific heats of the CSTR process reacting material and CSTR jacket 
coolant, respectively. 

These two nonlinear differential equations 2 and 3 cannot be solved analytically. The linearized equations in 
deviation variables are 
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The resulting transfer function 
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Based on the specific parameters of continuous stirred tank reactor model, the appropriate coefficients 

are to be calculated and the corresponding transfer function can be obtained. 

Fault Detection Methods 

 The term fault is generally defined as a departure from an acceptance range of an observed variable. A 
failure is a permanent interruption of a system ability to perform a required function under specified operating 

conditions [1]. The fault can be identified using various methods. Fault detection and analysis is an important 

problem in process engineering [15]. Early detection of process fault while the plant is still operating in a 
controllable region can help to avoid abnormal event progression and to reduce productivity loss. The basic 

classifications of fault detection method is represented in the Figure 2. 

 

Figure 2 Classification of Fault Detection methods 

Quantitative model based methods include those based on detailed physical models as well as those 

based on simplified models of the physical processes. These models can be steady-state, linear dynamic or 

nonlinear dynamic. 

Qualitative model- based approaches include rule-based system and models based on qualitative 

physics. For rule-based systems, it is necessary to distinguish between those based on expert rules for which 

there may be no underlying first principles from physics, rules derived from first principles, and simple limit 
checks which serve as the basis for alarms. 

In contrast to the first two groups where a priori knowledge of the process is assumed, the third group is 
based fully on process history, i.e., a large amount of historical data is assumed to be available 

3
. These models 



N.Nithya et al /International Journal of ChemTech Research, 2018,11(02): 266-274. 269 

 

 
include quantitative and qualitative methods. Here the fault diagnosis is done mainly based on the process 

history based methods. The process history based methods are classified into quantitative and qualitative 

methods. The quantitative methods include neural network and statistical. The qualitative methods include 

expert system and Qualitative Trend Analysis (QTA). Principal Component Analysis (PCA)/Partial Least 
Squares (PLS) and statistical pattern classifiers form a major component of statistical feature extraction 

methods. 

Principal Component Analysis 

Principal Component Analysis (PCA) is a statistical procedure that uses an orthogonal transformation to 
convert a set of observations by decomposing a data set                       using the singular value decomposition 

(SVD) as follows 

 

where T is a matrix containing principal components or score vectors and P is a matrix, of orthogonal loading 

vectors that are eigen vectors derived from the application of SVD on the covariance matrix of data set X, , nis 
the number of samples and m is the number of variables of the data set. Score vectors contain useful 

information about the relation between the samples and loading vectors contain useful information regarding 

the relationship between the variables. The covariance matrix       is defined as 

 

 

 

   

is a diagonal matrix containing the eigen values in a decreasing order               

Hotelling’s T
2 
statistic 

The Hotelling’s T
2 

statistic which measures the variations in the principal components at different time 

samples, is defined as  

 

For each new test data, the T
2
 statistic is calculated and a threshold, Tα is calculated as  
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Where, 

F(a,n-a,α) is the F-distribution with (a,n-a) degrees of freedom with significance level α, n is the 
number of observations of the training data, a is the number of selected principal components. If the T

2
 statistic 

exceeds Tα, then the fault is considered as detected. 

Q statistic 

The Q statistic measures the projection of a data sample on the residual subspace, which provides an 
overall measure of how a data sample fits the PCA model. The Q-statistic measures the square of error not 

captured by principal components in approximation. 
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where cα is the standard normal distribution with a significance level, θi and ho are defined as follows: 
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where m is the number of variables. PCA based fault detection process is explained in Figure 3. 

 

Figure 3 Fault detection process using PCA 

Data Generation 

There are various faults occur in CSTR. Some of the common faults considered here are actuator fault, 

sensor faults and process faults. For CSTR it is also considered Principle Component Analysis under faultless 
condition. Table 1 shows some of the data under faultless condition. 

able 1 Data under Faultless Condition 

S.

No 

Coolant flow 

rate Fc 

(lpm) 

Concentr

ation(mol

/l) 

Reactor 

temperature 

RT (
o
K) 

1. 181 0.1897 356 

2. 178 0.1878 359 

3. 176 0.1863 361 

4. 174 0.1841 363 

. . . . 

. . . . 

74. 56 0.0406 488 
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Sensor faults 

 A sensor is an object whose purpose is to detect events or changes in its environment, and then 

provide a corresponding output. It is otherwise known as a transducer if it is provided with suitable signal 
conditioning circuit. The sensor considered here is Thermometer-Temperature sensor. Table 2 shows some of 

the data considered with sensor fault condition.  

Actuator faults 

The operation of a control valve involves positioning its movable part relative to the stationary seat of 
the valve. The purpose of the valve actuator is to accurately locate the valve plug in a position dictated by the 

control signal. The actuator accepts a signal from the control system and in response moves the valve to a fully 

open or fully closed position. Table 3 shows some of the data considered with actuator fault condition. 

Table 2 Data under Sensor Fault Condition 

S.No Coolant flow rate Fc 

(lpm) 

Concentration(mol/l) Reactor 

temperature RT (
o
K) 

1. 88 0.0692 790 

2. 86 0.0672 771 

3. 84 0.0653 773 

4. 82 0.0642 874 

. . . . 

. . . . 

25. 60 0.0438 903 
 

Table 3 Data under Actuator Fault Condition 

S.No Coolant flow rate Fc 

(lpm) 

Concentration(mol/l) Reactor temperature 

RT (
o
K) 

1. 0 0.0734 1200 

2. 5 0.0701 1100 

3. 7 0.0692 1050 

4. 8 0.0672 1000 

 . . . 

 . . . 

24. 1200 0.064 160 
 

Process faults 

The process faults occur due to hard failures in equipment. This results in changes in the information 

flow between various variables. Both quality and reliability may be affected from process faults. Table 4 shows 

some of the data considered with process fault condition. 

Table 4 Data under Process Fault Condition 

S.No Coolant flow rate Fc 

(lpm) 

Concentration(mol/l) Reactor temperature 

RT (
o
K) 

1. 10 0.019 850 

2. 11 0.02 800 

3. 13 0.025 750 

. . . . 

. . . . 

24. 1200 8 160 
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Results and Discussion 

Principle Component Analysis under Faultless Condition 

During the normal process, Principle Component Aanalysis is performed for 73 samples. By the 

simulation, it can be identified that the Hotelling’s T
2
 and Q statistics have not exceeded their threshold value. 

Figure 4 shows the Principle Component Analysis during normal operation of CSTR 

 

Figure 4 Principle Component Analysis during Normal Operation of CSTR 

Fault Detection during Actuator Fault Condition  

During the normal process, it is considered that there is an actuator fault happened  from the samples 50 

to 73. By the simulation, it can be identified that the Hotelling’s T
2
 and Q statistics exceeded their threshold 

value after the sample 51. Figure 5 shows the fault detection of the CSTR during actuator fault condition. 

 

Figure 5 Fault Detection during Actuator Fault Condition 

Fault Detection during Process Fault Condition  

 During the normal process, it is considered that there is an process fault happened  from the samples 50 

to 73. By the simulation, it can be identified that the Hotelling’s T
2
 and Q statistics exceeded their threshold 

value after the sample 51. Figure 6 shows the fault detection of the CSTR during process fault condition.  
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Figure 6 Fault Detection during Process Fault Condition 

Fault Detection during Sensor Fault Condition 

During the normal process, it is considered that there is an sensor fault happened from the samples 50 to 

73. By the simulation, it can be identified that the Hotelling’s T
2
 and Q statistics exceeded their threshold value 

after the sample 50. Figure 7 shows the fault detection of the CSTR during sensor fault condition. 

 

Figure 7 Fault Detection during Sensor Fault Condition 

Conclusion 

The application of Continuous Stirred Tank Reactor is very essential nowadays. The fault detection in 
CSTR is very important. The various faults such as sensor faults, actuator faults, process faults present in CSTR 

are detected using Principle Component Analysis. 
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