Cimetidine : A Review

Singh H.*, Pahwa S., DhamijaK., Arora V

Department of Pharmacy, Lloyd Institute of Management & Technology, AKTU Greater Noida, U.P., India

Abstract : Cimetidine has been extensively used in the treatment of diverse gastrointestinal disorders. This drug is a selective, competitive histamine H$_2$ receptor antagonist. An extensive survey of literature has been published that includes various analytical, pharmacokinetic, clinical, analytical aspects, drug interactions and adverse effects of the drug.

Keywords : cimetidine, gastrointestinal, analytical, pharmacokinetic, clinical, analytical, adverse effects.

Introduction

H$_2$ blockers are a group of medicine that reduces the amount of acid produced by the cell in the lining of the stomach. They are also called histamine H$_2$ receptor antagonist or commonly called H$_2$ blocker.1. These are the first class of highly effective drug for acid-peptic disease.2

There are four H$_2$ antagonists3

1. CIMETIDINE
2. FAMOTIDINE
3. RANITIDINE
4. NIZATIDINE

Acid secretion stimulated by gastrin or pentagastrin is inhibited by H$_2$-receptor antagonist. These antagonists are used to treat zollinger-ellison syndrome and peptic ulcer. Moreover H$_2$ receptor are also useful in the prevention of stress ulceration and recurrence of gastric and duodenal ulcer.46.

H$_2$ receptor blockers are also frequently used to relive the symptoms of GERD (GASTRO-ESOPHAGEAL REFLUX DISEASE). These medication are available over the counter and prescription. Doctor may also recommend H$_2$ receptor blocker for off-label use.7

Cimetidine was the first H$_2$ blocker to be introduced clinically and is described as the prototype.1. The drug is a specific competitive antagonist H$_2$ receptor at the parietel cell8 which inhibit the histamine-stimulated secretion of gastric acid and reduce pepsin output. Hence cimetidine has been widely used in condition where inhibition of gastric acid secretion may be beneficial such as heart burn associated with acid reflux duodenal and gastric ulcer, gastroesophageal reflux disease and hypersecretory syndromes such as the Zollinger-Ellison’s.910

DOI= http://dx.doi.org/10.20902/IJCTR.2018.110213
In addition the drug is currently being considered for alternative indication. This drug has the ability to chelate metal ion in blood plasma and in different tissue and it had previously been suggested that the main therapeutic action of cimetidine might be mediated by its interaction with essential metal ions.

Physicochemical Aspects

Cimetidine, N-cyno-N\(^\text{1}\)-methyl-N\(^\text{II}\)\-{2-[(4-methyl -5-imidazolyl)-methylthio]ethyl}guanidine is a well-known antagonist for H\(_2\) receptor. Its empirical formula is C\(_{10}\)H\(_{16}\)N\(_{6}\)S. Cimetidine like histamine is an imidazole derivative and is a very polar molecule. The side chain is structurally specific but it differs from that of histamine it being longer and formally unchanged at physiological pH.

- **Appearance and Solubility**

 Cimetidine is a colourless crystalline solid with melting point 141-142° C. It is slightly soluble in water. Its aqueous solubility is 11.4mg/ml at 37°C at a final pH of 9.3. The minimum solubility determined in the pH range 1-8 at 30°C in 6 mg/ml.

- **Partition Coefficient**

 The n-octanol / water partition coefficient (log P) of cimetidine was reported as 2.5 at 37°C pH 9.2.

- **pKa**

 Cimetidine is weakly basic with the pka value reported as 6.80 and 6.93. It is thus present at least partly in ionized form in the upper GIT.

- **Salt and polymorphs**

 A hydrochloride salt of cimetidine existing of four polymorphs of cimetidine i.e A,B,C (anhydrous) and D (monohydrate) have been reported. The polymorphic form was shown to affect the physicochemical properties, the bioavailability as well as the clinical efficacy of cimetidine.

Pharmacological Aspects

Mode of Action

H\(_2\) receptor antagonist exhibit competitive inhibition at the parietal cell H\(_2\) receptor and suppress basal and meal stimulated acid secretion. H\(_2\) receptor antagonist inhibits acid production by reversibly competing with histamine for binding to H\(_2\) receptor on the basolateral membrane of parietal cell.

H\(_2\) antagonist reduces acid secretion stimulated by histamine as well as by gastrin and cholinomimetic agent through two mechanisms. Firstly histamine released from enterochromaffin-like (ECL) cell by gastrin or vagal stimulation is blocked from binding to the parietal cell H\(_2\) receptor secondly, direct stimulation of the parietal cell by gastrin or acetylcholine result in diminished acid secretion in the presence of H\(_2\) receptor blockade.

The most prominent effect of H\(_2\) receptor antagonist are on basal acid secretion. These agent thus are particularly effective in suppressing nocturnal acid secretion which reflect mainly basal parietal cell activity.

Clinical aspects

Cimetidine are widely used in conditions in which it is profitable to suppress gastric acid secretion. Various clinical studies on cimetidine have been summarized in this section.

Tuskey and Peura (2013) studied the use of H\(_2\) antagonist (cimetidine) in treating and preventing NSAID-induced mucosal damage.

Pantziarka et al. (2014) performed a study to determine the anticancer activity of cimetidine and concluded that cimetidine is a very strong candidate for repurposing as an oncological treatment, particularly as a perioperative treatment for surgical resection of solid tumors in combination with existing standard
The H$_2$ receptor antagonist cimetidine was first proposed as an anticancer agent in 1979 (Armitage and Sidner, 1979). M.N Sato et al. (1991) studied the immunomodulatory effect of cimetidine on the proliferative responses of splenocytes. Cimetidine was suggested as an effective prophylactic treatment for PFAPA in 1992 by Feder. Minocha et al. (1995) reported that cimetidine appears to have a role in the treatment of chronic idiopathic urticaria and some other type of urticaria when used in combination with various H$_2$ blocker for symptomatic dermatographism, the combination of an antihistamine and H$_2$ antagonist such as chlorpheniramine and cimetidine, appears to be effective. Cimetidine might also increase the latency time of heal induced urticaria. Sharma (1998) reported that molluscum contagiosum a common illness in children caused by a pox virus has been treated with cimetidine at a dose of 30-40 mg/kg. It has been used as a treatment for children and adult. Chang et al. (2006) studied the treatment of molluscum contagiosum with high dose of cimetidine therapy.

Various open-label studies have been published regarding the safety and efficacy of cimetidine in the treatment of common warts. Yilmaz et al. (1996) conducted a randomized, placebo-controlled, double-blind trial to evaluate the efficacy of cimetidine therapy in patient with multiple warts. Fit et al. (2007) studied the use of H$_2$ antagonist for the treatment of verruca vulgaris. Pires et al. (2013) reported that cimetidine can be a possible pharmacological alternative for the treatment of hypersexuality in children and adolescent with psychiatric disorders.

Pharmacokinetic Aspects

Absorption

Cimetidine is adequately absorbed after oral administration. Its bioavailability is between 56-68% in healthy subjects and about 70% in patient with peptic ulcer disease in whom a much greater variation in absorption was observed.

In the feed state the absorption of cimetidine is slightly delayed but the extent absorbed is not significantly different to that in the fasted state. Cimetidine is slightly soluble in water and has pka value of 6.80 and 6.93. A bioavailability study in a patient with a massive bowel restriction demonstrated reduced absorption of cimetidine which was attributed to rapid transit of drug through the GIT tract. Both the absorption and clearance of cimetidine are linear in the therapeutic range. Using the everted d ring technique the uptake of cimetidine from the rat jejunum and colon was show to be linear in the range 0.005- 40 nM. After oral administration in the fasted state cimetidine usually show erratic double peak or multiple peak phenomenon in plasma drug concentration-time profile. The phenomenon has been described extensively and still under discussion.

Distribution

The volume of distribution of cimetidine whether expressed at a steady-state (vdss) or the area volume of distribution (vd$_{A}$) is approximately 0.8-1.39 w/kg. The value decreases with increasing age. It crosses placenta and reaches milk but penetration in brain is poor because of its hydrophilic nature. The plasma protein binding of cimetidine is as low as 19%. Inactivation of cimetidine is primarily by hepatic conversion of side chain thioether moieity to the sulfoxide. With respect to metabolism in the GIT tract the human jejuna perfusion study conducted by HUI et al.
(1994) demonstrated that cimetidine metabolite constituted 3% and 6% of the initial cimetidine concentration over 50 cm of jejunum in two subjects. The pharmacokinetic profile of cimetidine has been shown in Table 1.

Analytical Method for Detection

Various analytical studies have been carried out for detection of cimetidine. Some imported analytical method reported in recent scientific literature and discussed in the following section.

A selective sensitive and accurate high performance liquid chromatography method was developed, validated and applied for the determination of cimetidine and ranitidine in plasma by Zendelovska & Stafilov (2003). HPLC method presented by Jantratid et al. (2007) involved a simplified sample preparation by protein precipitation with perchloric acid.

A rapid method for the simultaneous quantitation of the H$_2$ receptor antagonist drug cimetidine and ranitidine in human plasma by isocratic ion-pair reverse phase HPLC is described by J. Boutagy et al. (2006). The method involved a simple organic extraction step of the alkalinized plasma containing added internal standard followed by back extraction of the extract with dilute acetic acid and subsequent analysis of the aqueous acidic phase on a reverse phase (C18) column. The eluting solvent was acetonitrile-water (20:80 v/v) containing 0.005 mole/liter octonesulphonic acid and was monitored at 229 nm. The run time for assay was 12.5 minutes, with a detection limit for cimetidine of 50 mg/ml.

Chih Ho et al. 1999 described a high performance liquid chromatography procedure for the simultaneous determination of H$_2$ BLOCKER using two level full factorial design with three variable (volume of methanol, percentage of triethylamine and concentration of phosphate buffer) to select an acceptable mobile phase. De sowa et al. (2014) described simple and rapid method for the determination of cimetidine in human plasma by high performance liquid chromatography – mass spectrometry (HPLC–MS / MS). This method has two major advantages, the short time required and low sample volume required.

A validated, simple and sensitive fluorescence quenching method for determination of ranitidine, cimetidine and nizatidine in tablet and biological fluid was presented by Chang et al. (2011). This is the first single fluorescence method for the analysis of all H$_2$ antagonists.

Application of capillary zone electrophoresis to the quantitative estimation of cimetidine in rat urine was described by Arrowood et al. (1993). Darwish et al. (2008) described a simple, and sensitive spectrophotometric method of H$_2$ receptor antagonist by means of N-bromosuccinimide and P-aminophenol. This method was based on the reaction of these drugs with NBS and subsequent measuring of the excess N-bromosuccinimide by its reaction with P-aminophenemol to give a violet colour product.

Two sensitive and fast spectrophotometric method using batch and flow injection procedure for the determination of cemitidine are proposed by Garcia et al. (2003). A new simple titrimetric method was developed by Thimmaraju et al. (2012) to estimate cimetidine in bulk and formulation. This method was found to be sensitive and in expensive do not require any sample processing step. In this method cemetidine was taken in against methanol and acetic acid titrated against 0.1N hydrochloric acid and 0.1N perchloric acid using methanol orange and crystal violet as indicator for utilization and non–aqueous titration. Kumar and Karpagaseluil (1994) described a titrimetric method for the determination of cimetidine in pure form and doses form.

Mitsana-papazoglou et al. (1987) described a liquid membrane and polyvinyl chloride matrix ion-selective electrode (IES) that responds to the cationic forms of cimetidine and ranitidine. Sanchez-Peren et al. (1985) described a method which used the direct current polarographic behavior of cimetidine in strong acid to determine the cimetidine.
Dosage forms of cimetidine

- TABLET \(^{71,72}\)
- SUSPENSION \(^{73,74}\)
- GEL FORMULATION \(^{75}\)

Drug Interaction

Drug-drug interactions are one of the commonest causes of medication error. Drug interaction refers to modification of response to one drug by another when they are administered simultaneously or in quick succession.\(^6\) Drug interactions can be broadly divided into pharmacokinetic and pharmacodynamics interaction. The pharmacokinetic interaction occurs when the absorption, distribution, metabolism and elimination of one drug is modified by another.\(^2,4\) Several drug interaction of cimetidine are given below in Table 3.

Adverse effects of cimetidine

Cimetidine is well tolerated by most patients. Adverse effect occurs in 5% cases. The use of this drug may be associated with some side effect which include:

- Headache, dizziness, bowel upset, dry mouth, rashes, constipation, diarrhea, insomnia, nausea, and muscle pain\(^7\)
- Cimetidine when give in high dose can cause impotence and temporary decrease in sperm count\(^2,88\)
- Various CNS effect like confusion, psychomotor restlessness, hallucination and disorientation stupor and convulsion may reported\(^2,89\)
- Cimetidine induce endocrine disturbances\(^90\)
- Thrombocytopenia recognize as one of the possible side effect of cimetidine therapy\(^91\)
- Bradycardia, hypotension and even cardiac arrest has occurred with rapid bolus intravenous injection\(^92\)

Conclusion

Cimetidine is a histamine H\(_2\) receptor antagonist which is widely prescribed in gastric ulcer, duodena ulcer, gastroesophagel reflux and also in condition in which it is profitable to suppress gastric acid secretion. It is very effective and clinically important antiulcer agent. Significant physicochemical aspect, pharmacological aspect, pharmacokinetics aspect, analytical method for identification of cimetidine, drug-interaction and adverse effect have been described.

Table 1: Pharmacokinetic profile of Cimetidine

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bioavailability</td>
<td>56-68%</td>
</tr>
<tr>
<td>Plasma protein binding</td>
<td>19%</td>
</tr>
<tr>
<td>Elimination half life</td>
<td>2 hr.approx.</td>
</tr>
<tr>
<td>Pka</td>
<td>6.80, 6.93</td>
</tr>
<tr>
<td>Excretion</td>
<td>via kidney</td>
</tr>
</tbody>
</table>

Table 2: Brand of cimetidine available in market

<table>
<thead>
<tr>
<th>Brand Name</th>
<th>Manufacture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cimetidine (tab)</td>
<td>Cadila H</td>
</tr>
<tr>
<td>Cimetin (tab)</td>
<td>PCI</td>
</tr>
<tr>
<td>Tagamet HB (tab)</td>
<td>GlaxoSmithkline</td>
</tr>
<tr>
<td>Tagamet HB solution</td>
<td>GlaxoSmithkline</td>
</tr>
<tr>
<td>Ulciban (tab)</td>
<td>Torrent</td>
</tr>
<tr>
<td>Cimecare (cap)</td>
<td>Advacare</td>
</tr>
</tbody>
</table>
Table 3: Drug interactions of cimetidine

<table>
<thead>
<tr>
<th>Drug</th>
<th>Interaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phenytoin</td>
<td>Cimetidine inhibits the hepatic microsomal oxidation system. Phenytoin also metabolized by the hepatic microsomal system.Cimetidine produced a significant increase in the plasma concentration of phenytoin.</td>
</tr>
<tr>
<td>Theophylline</td>
<td>Decrease theophylline clearance</td>
</tr>
<tr>
<td>Lidocaine</td>
<td>Decrease hepatic clearance</td>
</tr>
<tr>
<td>Propanolol</td>
<td>Plasma level increases and reduce clearance</td>
</tr>
<tr>
<td>Warfarin</td>
<td>Reduce clearance</td>
</tr>
<tr>
<td>Ketoconazole</td>
<td>Absorption is decreased</td>
</tr>
<tr>
<td>Metronidazole</td>
<td>Plasma clearance of metronidazole decreased</td>
</tr>
<tr>
<td>Nifedipine</td>
<td>Increases the AUC</td>
</tr>
<tr>
<td>Quinidine</td>
<td>Increases the bioavailability</td>
</tr>
</tbody>
</table>

References

1. Patient.info
5. Marks I.N., The H2 receptor antagonist era in duodenal ulcer disease, Yale journal of biological and medicine, 1992,65(6),639-692
7. Healthline.net
24. Anne Tuskey and David Peura, The use of H2 antagonist in treating and preventing NSAID induced mucosal damage, Arthritis Research and Therapy, 2013, 15(suppl 3); 56
49. Goodman and Gilman's, The pharmacological basis of therapeutics, 10th, McGraw Hill, Medical publishing division, 2001
51. James E McGUIGAN, A consideration of the adverse effect of cimetidine, Gastroenterology, 1981,80,181-182
63. Chang YX, Qui YQ, Du LM., Li CF. and Guo m., Determination of ranitidine, nizatidine and cimetidine by sensitive fluorescent probe, Analyst, 2011,136,4168-4173
64. Arrowood S, Hoyt A.M, Determination of cimetidine in urine by capillary zone electrophoresi , Microchemical journal , 1993, 47(1-2),90-95
68. Singh H. et al., Determination of cimetidine in pure form and in dosage form using N,N-dibromodimethylhydantoin, Analyst, 1994, 119(6), 1375-1376
76. Singh Nidhi, Concept of drug interaction, I R J P., 2012, 3(7), 2230
86. Markichan J. J., Boudoulas H and Schal S S., Effect of cimetidine on quinidine bioavailability, BIOPHARMACEUTICAL AND DRUG DISPOSITION, 1989, 10(1), 121-125
88. Bronx N Y, Adverse effect of cimetidine, Anesthesia progress, 1979, 26(5), 140
90. R W Spence and L R Celestin, Gynaecomastia associated with cimetidine, Gut., 1979, 20(2), 154-1257
