

International Journal of ChemTech Research CODEN(USA): IJCRGG, ISSN: 0974-4290, ISSN(Online):2455-9555 Vol.10 No.9, pp416-425,2017

Kineticstudies of Rh(III)-catalysed oxidation ofpentoxifyllineby potassium iodate in alkaline medium

Ashok Kumar Singh*, RituSwaminiBala, Jaya Srivastava, RanjuPradhan, RupamYadav, ShahlaRahmani

Department of Chemistry, University of Allahabad, Allahabad, 211002, India

Abstract:Thekineticandmechanisticinvestigation of pentoxifyllineby potassium iodate in alkaline medium using Rh(III) as homogeneous catalyst has been carried out at 35° C. The reaction shows first-order dependence on Rh(III) andpentoxifylline concentration. The order of reaction was found to be fractional positive with respect to [IO₃⁻]. Variation of [OH⁻] and [CI⁻] showed no effect on the rate of the reaction. The reaction remains unaffected by the change in ionic strength and dielectric constant of the medium. Various activation parameters (E_a, $\Delta H^{\#}$, $\Delta S^{\#}$, $\Delta G^{\#}$, and A)were calculated with the help of rate constants obtained at four different temperatures. [RhCl₃(H₂O)₃] was postulated as the reactive species of Rh(III) chloride in alkaline medium. 1-(5-carboxy-pentyl)-3,7-dimethyl-3,7-dihydro-purine-2,6-dione and formaldehyde were identified as the main oxidation products.Asuitable mechanism consistent withkinetic observationsand spectroscopic information has been proposed whichissupported by the observed positive entropy of activation.

Keywords:Pentoxifylline,Rh(III)-catalysis,Spectroscopicinformation, Multiple regression analysis,Alkaline medium.

Ashok Kumar Singhet al/International Journal of ChemTech Research, 2017,10(9): 416-425.
