

International Journal of ChemTech Research

CODEN (USA): IJCRGG, ISSN: 0974-4290, ISSN(Online):2455-9555 Vol.10 No.8, pp 701-708, **201**

Evaluation of Soil Properties on Clay Soil by using Mineral Admixtures and Human Ash

P.Sasikumar*, M.Prithina, R.L.Saranya, C.Sathyadevi, E.Vaishnavi

Department of Civil Engineering, Muthayammal Engineering College, Rasipuram, Tamilnadu, India.

Abstract : The clay soil is a problematic soil which cannot be directly used for the construction of structures because it has high swelling and high shrinkage. Various techniques are available to stabilize the soil to make better foundation for structures. Soil stabilization is the process of improving the engineering properties of the soil and thus making it more stable. This project deals with stabilization of clay soil by using mineral admixtures like lime with constant proportion of 1%, 3%, 5%, 7% & 9% and metakaolin with constant proportion of 2%, 4%, 6%, 8% & 10% and Waste material like human ash is added separately in various proportions like 0.5%, 1%, 1.5%, 2% & 2.5% to the soil with mineral admixtures. After the conclusion made from the laboratory test the optimum performance obtained is in **4% lime with 1.5% human ash** and **5% metakaolin with 1% of human ash**. Lime and Human ash combination can increase the maximum dry density(MDD) and Unconfined compressive(UCC) strength value of the soil.

Key Words : Clay soil, Mineral admixtures, Human ash, MDD and UCC value.

1.0 Introduction

Soil stabilization is the process of improving the engineering properties of the soil and thus making it more stable. Stabilization is used to reduce the permeability and compressibility of the soil mass in the earth. The main use of stabilization is to improve the natural soils for the construction of highways and airfields^{1,2}. Improvements include increasing the weight bearing capabilities and performance of in-situ subsoil, sands, and other waste materials in order to strengthen road surfaces. Clay are the smallest particles in soil mass, and they behave as collids. The clay consists of minerals like Illite, Kaolinite and Montmorillonite^{3,4}. Various techniques are available to stabilize the soil to make better foundation for structures. This project deals with stabilization of clay soil by using mineral admixtures (lime and metakaolin) mixed in constant proportion. Waste material like human ash are added separately in various proportions to the soil with mineral admixtures. The soil is taken from Kollapatti Village, Salem Dt, Tamilnadu. The clay soil has high swelling determined by Differential Free Swelling test^{5,6}.

1.2 Clay soil and its properties:

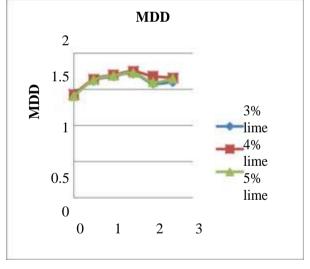
Table no:1 Properties of clay soil.

Test		Result	
Conduct			
Ed			
Liquid limit		70.5%	
Plastic limit		40.15%	
Shrinkage		5 3 3 3	
1		5.29%	
limit	-		
Plastic			
		45.35%	
index		10.0070	
Shrinkage			
	65.21%		
index	03.2170		
Standard	OMC	MDD	
proctor	12%	1.38kg/cm ³	
proctor	12/0	1.50kg/cm	
LICC		1.251 / 2	
UCC	1.25kg/cm ²		
CBR test	1.42g/cm ³		
Specific		2.7	
gravity test			

Table no:2 Properties of human ash

ELEMENT	% BY	ATOMIC
	MASS	%(CALC)
Carbon	18%	9.5%
Oxygen	65%	25.6%
Sodium	0.1%	0.03%
Magnesium	0.05%	0.01%
	0.72%	-
Aluminium		
Silica	0.9%	-
Sulphur	0.2%	0.04%
Chlorine	0.2%	0.04%
Calcium	1.5%	0.24%
	3g in men,	
Iron	2.3g in	-
	women	

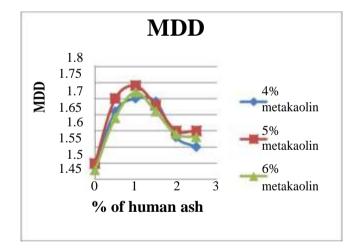
1.3 Human ash and its properties:



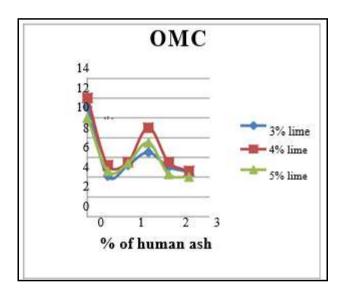
2.0 Experimental Test and Results:

In this project we have conducted the experiments on clay soil mixed with 3%,4%,5% lime added separately with 0.5%,1%,1.5%,2%,2.5% of human ash and 4%,5%,6% metakaolin added separately with 0.5%,1%,1.5%,2%,2.5% of human ash and the results are given below,

S.N O	% of hum an ash	MDD (3%li me with vario us % HA)	MDD (4%li me with vario us % HA)	MDD(5% lime with various % HA)
1	0	1.42	1.43	1.41
2	0.5	1.62	1.64	1.63
3	1	1.68	1.7	1.69
4	1.5	1.72	1.75	1.73
5	2	1.58	1.68	1.6
6	2.5	1.6	1.66	1.65

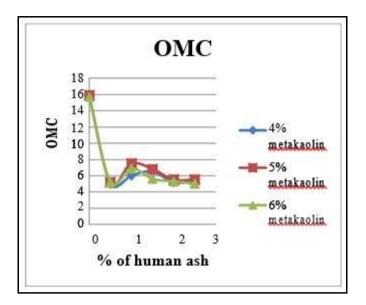

2.1 Maximum Dry Density for 3%, 4%, 5% Lime and Various % Human Ash

% of human ash

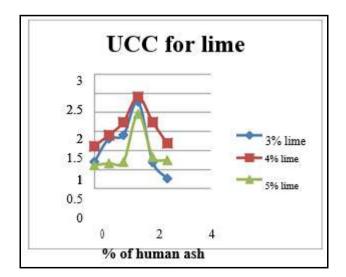

Graph no:1 (Maximum dry density for Clay with 3%, 4%, 5% Lime and various % Human ash)

S.N O	% of huma n ash	MDD (4%M with variou s % HA)	MDD (5%M with variou s % HA)	MDD (6%M with variou s % HA)
1	0	1.488	1.498	1.477
2	0.5	1.66	1.7	1.64
3	1	1.7	1.74	1.72
4	1.5	1.69	1.68	1.66
5	2	1.58	1.6	1.59
6	2.5	1.55	1.6	1.58

Graph no: 2 (Maximum dry density for Clay with 4%, 5%, 6% Metakaolin and various % Human ash)

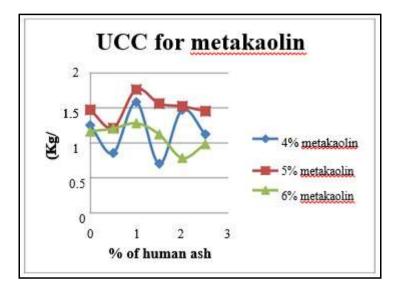

S.NO	% of human ash	OMC (3%lime with various % HA)	OMC (4%lime with various % HA)	OMC(5%lim e with various % HA)
1	0	11.11	12	10
2	0.5	4.1	5.2	4.6
3	1	5.2	5.5	5.4
4	1.2	6.5	9	7.5
5	2	5	5.5	4.3
6	2.5	4.5	4.6	4

Graph no: 3 (Optimum moisture content for Clay with 3%, 4%, 5% Lime and various % Human ash)


2.4 Optimum Moisture Content for 4%, 5%, 6% Metakaolin and Various % Human Ash

S. No	% of huma n ash	OMC (4%M with variou s % HA)	OMC (5%M with variou s % HA)	OMC (6%M with variou s % HA)
1	0	15.78	15.9	15.7
2	0.5	5	5.2	5.2
3	1	6	7.5	6.9
4	1.5	6.5	6.8	5.6
5	2	5.2	5.5	5.3
6	2.5	5.2	5.5	5

Graph no: 4 (Optimum moisture content for Clay with 4%, 5%, 6% Metakaolin and various % Human ash)


S.N0	% of human ash	Stress (3%lime with various % HA)	Stress (4%lime with various % HA)	Stress (5%lime with various % HA)
1	0	0.7	1.11	0.61
2	0.5	1.3	1.4	0.66
3	1	1.4	1.74	0.7
4	1.5	2.27	2.4	1.96
5	2	0.69	1.74	0.83
6	2.5	0.26	1.19	0.74

Graph no: 5 (Optimum moisture content for Clay with 4%, 5%, 6% Metakaolin and various % Human ash)

S.NO	% of human ash	Stress (4% M with various % HA)	Stress (5% M with various % HA)	Stress (6%M with various % HA)
1	0	1.25	1.47	1.16
2	0.5	0.85	1.21	1.2
3	1	1.58	1.76	1.28
4	1.5	0.7	1.56	1.12
5	2	1.47	1.52	0.78
6	2.5	1.12	1.45	0.98

2.6 UCC for 4%, 5%, 6% Metakaolin and Various % Human Ash

Graph no: 6 (Unconfined compressive strength for Clay with 4%, 5%, 6% Metakaolin and various % Human ash

3.0 Conclusion:

The aim of this project is to improve the index and engineeering properties of expansive clay soil ^{7,8}.In this project we have concluded that by adding lime, metakaolin and human ash with clay soil it gives high index properties and bearing strength when compared to clay soil⁹.

Maximum dry density and compressive strength of soil increased with 4% lime with 1.5% human ash. and also increased with 5% metakaolin and 1% human ash.

By comparing lime and metakaolin the best result obtained on soil with 4% lime and 1.5% human ash. It is very economical for soil stabilization.

Reference:

- 1. Brooks, R.M., (2009), "Soil stabilization with fly ash and Rice husk ash". International journal of research and reviews in applied science, volume 1, issue 3, pp 209-217
- 2. Prof. N. R. Patil, Prof. Mrs. D. R. Kulkarni & Prof. S. D. Talegaonkar, "Economical Pavement Design by Stabilizing Effect of Fly ash and Lime" Paripex- Indian Journal Of Research. Volume :2 / Issue: 3 March2013.
- 3. Dr.K.R.Arora, "soil mechanics and foundation engineering", standard publishers, delhi.
- 4. Gulati,S.K., "Engineering properties if soils", Tata McGraw-Hill publishing co ltd, new delhi.

- 5. holtz, W.G, & gibbs, H.J (1956), "Engineering properties of expansive clay", Trans, ASCE, 121.
- IS: 2720- Part 5-1985, "Determination of liquid limit and plastic limit". IS: 2720- Part 6- 1972, "Determination of shrinkage limit". 6.
- 7.
- IS:2720-Part 7-1980, Water content-dry density relation using light compaction (1992)". 8.
- IS:2720-Part 10- 1991, "Unconfined compressive strength (1995) 9.
