

International Journal of ChemTech Research

CODEN (USA): IJCRGG, ISSN: 0974-4290, ISSN(Online):2455-9555 Vol.10 No.8, pp 199-210, **2017**

ChemTech

"Review Article on Assets of Carbon Fiber Reinforced Polymers"

Panimayam. A¹, Chinnadurai. P², R.Anuradha³*

^{1,2}Department of civil Engineering, Infant Jesus College of engineering, Tuticorin, India. ³Department of civil Engineering, SNS College of Technology, Coimbeters, India.

³Department of civil Engineering, SNS College of Technology, Coimbatore, India.

Abstract : Carbon fibers were the most attractive fibers to researchers, engineers and scientists as an alternative reinforcement for fibre reinforced polymer (FRP) composites⁴. Due to their high stiffness, high tensile strength, low weight, high chemical resistance, high temperature tolerance and low thermal expansion. Reinforced concrete columns have an important function in the structural concept of many structures. Often these columns are helpless to loads due to impact, explosion or seismic loads and also sensitive to corrosion of steel reinforcement. Confinement has proven to be very efficient in increasing concrete strength and ductility of members. Wrapping by means of FRP reinforcement enhances the structural behavior of concrete column considerably. This paper is a review on the properties of carbon fiber reinforced polymer composites in the strengthening of reinforced concrete columns. **Keywords :** Mechanical properties, Thermal properties Carbon Fiber Reinforced Polymers (CFRP).

1.0 Introduction

In recent years, the composite materials, by their non-corrodibility, high stiffness and strength-toweight ratios, have quickly appeared as advanced solutions adapted to the strengthening and the repair of civil engineering structures¹. Over the last few years, there has been a worldwide increase in the use of composite materials for the rehabilitation of reinforced concrete structures. One important application of this composite retrofitting technology is the use of fiber reinforced polymer (FRP) jackets or sheets to provide external confinement to reinforced concrete columns. Fiber Reinforced Polymers (FRP) composites were first developed during the 1940s, primarily for military and aerospace engineering applications. In the case of a seismic event, energy dissipation allowed by a well-confined concrete core can often save lives². FRP is a relatively new class of composite material manufactured from fibers and resins has proven efficient and economical for the development and repair of new and deteriorating structures in civil engineering. Compared to steel and concrete, FRP composites are about 1.5 to 5 times lighter. FRP composites provide only a nominal increase in stiffness so they are generally useful for increased structural strength instead of deflection control. Strengthening and increased durability against steel corrosion can be achieved in a RC structure by wrapping them with fiber reinforced polymer.

Advantage of FRP Over steel straps as external reinforcement is its easy handling. Thus, minimal time and labour are required for Implementation. The application of FRP in the construction industry can eliminate some unwanted properties of high-strength concrete, such as its brittle behavior. FRP is particularly useful for strengthening columns and other unusual shapes. There is a growing interest in the use of FRP for strengthening of concrete structures such as buildings, bridges, chimneys, as well including load bearing and infill panels, pressure pipes, tank liners, roofs, bridge repair and retrofit, mooring cables, structural strengthening, etc. This is mainly due to their performance characteristics, ease of application, and low life cycle costs^{5,7}.Carbon Fiber Reinforced Polymer (CFRP) has a tensile strength much higher than the tensile strength of steel reinforcement. Carbon fiber is a material, which is usually used in combination with other materials to form a composite. It is also called graphite fiber or carbon graphite, carbon fiber consists of very thin strands of the element carbon. The properties of carbon fiber, such as high stiffness, high tensile strength, low weight, high chemical resistance, high temperature tolerance and low thermal expansion makes them one of the most popular material in civil engineering possessing strength up to five times that of steel and being one-third its weight, as it is called as, 'the superhero' of the material world. Carbon fibers have high elastic modulus and fatigue strength than those of glass fibers³. Considering service life, studies suggests that carbon fiber reinforced polymers have more potential than agamid and glass fibers. They also have high chemical resistant and have high temperature tolerance with low thermal expansion and corrosion resistance. Carbon fiber-reinforced composite materials are used to make aircraft and spacecraft parts, racing car bodies, golf club shafts, bicycle frames, fishing rods, automobile springs, sailboat masts, and many other components where light weight and high strength are needed⁶. Carbon fiber's high strength, light weight and resistance to corrosion make it an ideal reinforcing material. Carbon fiber plates are thin, strong and flexible, they can be designed and installed to provide a cost effective solution³. The carbon FRP (CFRP) composites, as unidirectional laminates, are ideal materials for confining existing concrete columns. When the FRP-wrapped concrete is subjected to an axial compression loading, the concrete core expands laterally. This expansion is resisted by the FRP; therefore the concrete core is changed to a three-dimensional compressive stress state. In this state, performance of the concrete core is significantly influenced by the confinement pressure. The confinement pressure provided by the FRP increases continuously with the Lateral strain of concrete because of the linear elastic stress-strain behaviour of FRP, in contrast to steel confined concrete in which the confining pressure remains constant when the steel is in plastic flow. Failure of FRP-wrapped concrete generally occurs when the hooprupture strength of the FRP is reached.

Characteristic	Values
Modulus of elasticity	2380000 kg/cm ²
Tensile strength	43000 kg/cm^2
Ultimate strength	1.8%
Thickness	0.131mm
Weight of CFRP	$230 \pm 10 g/m^2$

 Table 1 - Mechanical properties of CFRP

The use of Carbon Fiber Reinforced Polymer (CFRP) materials has increased significantly in the last decade. Fully or partially wrapping concrete circular columns with wet lay-up CFRP sheets can significantly increase the load carrying and energy absorption capacities of these elements⁸. The effectiveness of this CFRP-based confinement strategy depends on several parameters such as: concrete strength, CFRP percentage, geometric confinement arrangement, column aspect ratio, disposition and percentage of existing steel reinforcement. Some properties of CFRP sheets like low weight, high strength and easy installation make these composites highly suitable for concrete confinement. In this article let us study about the various properties of carbon fiber with the reference of various literature based study.

2.0 Review of Literatures

Wrapping columns with CFRP enhanced the performance of the columns by increasing their displacement at failure, meaning more ductility, maximum load of the columns. FRP jackets prevent premature failure of concrete cover and buckling outwards of steel bars, leading to significant improved performance of FRP concrete column composite. The CFRP strips used to externally wrap the columns were specified to have a width of 75 mm. The whole external load was determined including the contributions of confined core and longitudinal bars, taking into account the strength and buckling conditions of the reinforcement⁹. The moment capacity of strengthened columns can be computed analytically by using the well-known fiber method based on the discretization of the cross-section. At ultimate load, when confinement action was no longer provided due to FRP fracture, the internal steel started buckling and the crushed concrete fell down between the fractured FRP.

This indicates that the concrete core is significantly damaged (but yet confined) even before reaching ultimate load. The following parameters of CFRP were evaluated from different literatures.

2.1 Compressive Strength

To measure the compressive strength of confined concrete, strain in lateral failure is considered. Increasing the amount of CFRP sheets produce an increase in the compressive strength of the confined column. The stiffness of the columns has decreased because of the cracking and the expansion of the confined concrete. At this stage, the confining effect of FRP wraps starts to increase the compressive strength of the columns.

S.no	Name Of The Author and Year	Specimen Detail (L×D or a×a×L)	Wrapping detail	Methods adopted	Remarks
1.	N. Chikh et al., 2011.	(320×160)mm, (1000×197)m m circular column and (140×140×280)mm square column with 50Mpa grade concrete.	Specimens were wrapped under a monotonic uni- axial compression load up to failure unidirectional wrap with 1and 3 layers.	The load was applied at a rate of 0.24 MPa/s and recorded with an automatic data acquisition system. Axial and lateral strains were measured using extensometers.	Increasing the amount of CFRP sheets, increase in the compressive strength of the confined column and decrease the deformation capacity.
2.	K. olivová et al., 2008.	4columns with (250x250x150 0)mm and 3 numbers of (100x100x400) mm prisms.	Wrapping the columns with fiber thickness of 0.176 mm.	Near-surface mounted (NSM) laminate strips has been used to increase the load- carrying capacity of concrete structures.	The ultimate strength of the confined concrete is closely related to the failure strength of the FRP wraps.
3.	M. Reza Esfahani et al., 2005.	3circular column of (850×203)mm and 3 square column of (180×850)mm	All specimens were wrapped using two layers of CFRP. The thickness of each layer of FRP was 1mm.	Axial load and displacement of columns Were recorded during tests using a displacement control test set up.	Closely spaced transverse reinforcement increase the compressive strength. The confining effect of FRP wraps starts to increase the compressive strength of the columns.
4.	Giuseppe CAMPIO NE et al., 2011.	RC column of size (925×205)mm with 57.3Mpa grade concrete and (608×152)mm with 33.2Mpa grade concrete.	Wrapped with carbon fiber reinforced wraps having thickness 1.6mm.	The moment capacity of strengthened columns can be computed by using the method discretization of the cross-section.	Pressure induced by the external wraps increased the concrete strength, limit's spellingof concrete cover, reduces the critical length, minimized the local second order effects.

2.2 Stress-Strain Curve

The analytical load-axial shortening response of the compressed columns was obtained on the basis of the stress-strain curves of the confined concrete and compressed steel bars. Axial and lateral strains were measured using extensometers.

	Name Of	Specimen	Wrapping	Methods adopted	Remarks
S.no	The Author	Detail (L×D or a×a×L)	detail		
0.110	and Year				
1.	M.N.S. Hadi et al., 2010.	12circular columns (295×40)mm and 6 square columns of (295×295×295)mm.	2 layers of CFRP strips externally wrapped on columns with a width of 75 mm, and $at10^{\circ}$ Horizontal.	Columns wrapped with CFRP experience higher maximum stresses capacity and larger axial strains.	Columns experience decreases in their stress carrying capacity when it reaches its maximum stress capacity. The columns axial strains still expand until they reach their ultimate strain capacity.
2.	K Yoshimura et al., 2002.	Rectangular columns with (210×240) mm and circular column with (240×350)mm.	0.222mm thickness fiber strip is used.	Displacements and strains in reinforcing bars and jacketing materials were measured by using the displacement transducers and strain gages.	strain relations of all the concrete were modeled by considering the confining effects given by the strengthening

2.3 Load-Displacement Curve

Depending upon the dimensions of the element it is possible to achieve load deflection characteristic curve which are nearly linear or strongly curved the formation of the curve depends upon the ratio of h/t it is called load-deflection curve.

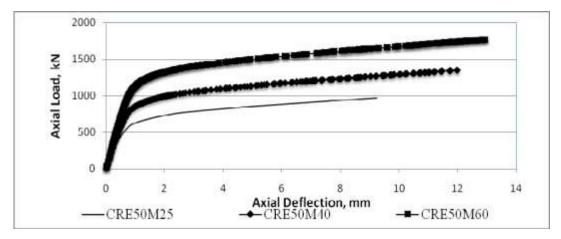


Fig.1 Effect of grade of concrete on load deflection curve

Name Of The Author and Year	SpecimenDetail(L×Da×a×L)	Wrapping detail	Methods adopted	Remarks
Muhamma	16 square	Fibers with	25mm and 50mm	The load displacement
			eccentric loading	curves of the columns,
			provided.	increases with the
al., 2010.				increasing the load until
	radius 54mm.	•		approaching the maximum load.
				load.
		vertical.		
M. Reza	3circular	All specimens	Axial load and	The stiffness of the
Esfahani	column of	· ·		columns has decreased
et al.,	· ,	•		because of the cracking
2005.	1			and the expansion of the
			0 0	confined concrete. The
	(180×850)mm.	•	-	load-displacement
		1mm.		relationships of the
			up.	confined columns are still
				linear but with smaller slopes.
	The Author and Year Muhamma d NS HADI et al., 2010. M. Reza Esfahani	The Author and YearDetail (L×D or a×a×L)Muhamma d NS16 square columns of (200×200×800) al., 2010.HADI et al., 2010.(200×200×800) mm with corner radius 34mm.M. Reza Esfahani et al., (850×203)mm	The AuthorDetail (L×D or axa×L)Wrapping detailMuhamma(L×D or a×a×L)detailMuhamma16 squareFibers with thickness of 100mm and and, 2010.AL, 2010.(200×200×800)100mm and 75mm are used as 1 and 3 layer in circumferential and 1 layer vertical.M. Reza3circularAll specimens were wrapped using two layers 2005.A. Reza3circularof CFRP. The column of thickness of cach	The AuthorDetail (L×D or a×a×L)Wrapping detailMethods adoptedMuhamma16squareFiberswithAdoptedMuhamma16squareFiberswith25mm and 50mmd NScolumns ofthickness ofeccentric loadingHADI et(200×200×800)100mm andprovided.al., 2010.mm with corner75mm are used asradius 34mm.1 and 3 layer incircumferentialand 1 layerM. Reza3circularAll specimensAxial load andEsfahanicolumn ofwerewrapped2005.and 3 squareof CFRP. Thewere(180×850)mm.layer of FRP wasa displacement

2.4 Size and Shear Displacement

In some specific position like construction on slope application of the short RC column is unavoidable. To get high ultimate strength column with small diameter (150mm) is mostly preferred.

S.no	Name Of The Author and Year	Specimen Detail (L×D or a×a×L)	Wrapping detail	Methods adopted	Remarks
1.	Muhamm ad NS HADI et al., 2010.	16 square columns of (200×200×80 0)mm with corner radius 34mm.	Fibers with thickness of 100mm and 75mm are used as 1 and 3 layer in circumferential and 1 layer vertical.	25mm and 50mm eccentric loading provided.	Short columns were designed to avoid the formation of secondary moments due to the slenderness effect.
2.	G.P.Lign ola et al., 2008.	Square column with 1500mm width.	Fibers are wrapped unidirection.	The model, coupled with the algorithm, it is able to guess the fundamental behavior of the hollow square members confined with FRP both in terms of strength and ductility,the evolution of stresses and strains inthe concrete and in the	Shear displacement occurs because of the plastic hinge model can only give limited predictions in terms of deformability.

	confinement	
	jacket. and the	
	assessment of the	
	member	
	deformability in	
	terms of both	
	curvature and	
	displacement	
	ductility.	

2.5 Shape

Shape of cross-sections of columns can directly affect the confinement effectiveness of externally bonded FRP jackets. Benefit of strength is higher for circular than for square or rectangular sections. Poor confinement may be due to low FRP jacket stiffness (type of FRP and numbers of layers) or due to sharp edges in cross sections. Mitigation of this shape effect is achieved by rounding the corners of the square or rectangular sections.

S.no	Name Of The Author and Year	Detail (L×D or a×a×L)	Wrapping detail	Methods adopted	Remarks
1.	K. olivová et al., 2008.	4 series of columns with dimensions Of (250x250x1500) mm, 3 numbers of (100x100x400) mm prisms.	Wrapping the columns with fiber thickness of 0.176 mm.	Near-surface mounted (NSM) laminate strips has been used to increase the load- carrying capacity of concrete structures.	The shape of the cross sections and sharp edges in the cross sections of columns directly affect the confinement effectiveness of externally bonded concrete. The efficiency of FRP confinement is higher for circular than square sections.
2.	N. Chikh et al., 2011.	(320×160)mm and (1000×197)mm circular column and (140×140×280) mm square column with 50Mpa grade concrete.	Specimens were wrapped under a monotonic uni-axial compression load up to failure unidirectional wrap with 1 and 3 layers.	The load was applied at a rate of 0.24 MPa/s and recorded with an automatic data acquisition system. Axial and lateral strains were measured using extensometers.	Failure initiated near a corner, because of the high stress concentration at that locations. The efficiency of the CFRP confinement is higher for circular than for square sections, as the composite wrap was greatly affected by its premature damage at the sharp column corner.
3.	M.N.S. Hadi et al., 2010.	12circular columns (295×40)mm and 6 square columns of (295×295×295) mm.	2 layers of CFRP strips externally wrapped on columns with a width of 75 mm, and at 10^{0} Horizontal.	Columns wrapped with CFRP experienced higher maximum stresses capacity and larger axial strains compared to columns that are not wrapped with CFRP.	Circular columns have much better performance in stress carrying capacity compared to square columns. Square columns wrapped with CFRP tend to have more capability to receive repeated large loadings and stresses, and experience a significant vertical decrease in stress

					carrying capacity
4.	Mahmoud Mohamed El-Taher et al., 2012.	9 rectangular R.C. columns with different rectangularity of cross- sections were constructedund eraxial static centric load.	Thickness of 0.131mm carbon fibers were wrapped uni-directionally with spacing such as 120,96,75mm.	The axial nominal stress and the axial nominal strain are evaluated during the testing of each column up to failure.	carrying capacity. The strength, the ductility, the stiffness efficiency and the absorbed energy efficiency are higher for confined of both one layer and two layers than that for unconfined columns. for rectangular section reinforced concrete columns as the rectangularity (t/b) increases, the axial nominal stress, the axial nominal strain, the modulus of elasticity and the modulus of toughness are increased by the confined one layer and two layers are decreased.
5.	E EEtman et al., 2002.	2 square column of 150mm length and 2 circular column of 150mm diameter.	The column was then wrapped with the CFRP sheet; the end of the sheet overlapped100 mm.	The vertical longitudinal strain, for the square specimens, was measured using 4, 30 mm gauge Length. Lateral strains were measured on the concrete face at mid height using 2 electrical strain gauges glued on two opposite sides.	The circular columns showed extra capacity than the square columns by a ratio between 35% and 21%. The use of FRP fabric for the jacketing of reinforced concrete circular or square columns increased the ductility and increased the ultimate strain of the section.

2.6 Ductility

The confinement provided by the CFRP improves the ductility of the column. Ductility of the confined concrete increases with the increased lateral pressure. Number of layer increases ductility also increases. Increase in ductility depends upon the decrease in compressive strength.

S.no	Name Of The Author	Specimen Detail (L×D or	Wrapping detail	Methods adopted	Remarks
	and Year	a×a×L)	uctan		
1.	PezhmanTa	Circular	0.165mm thick	Structural behaviour	If number of layer
	ghia et al.,	columns with	fibers are	of the RC short	increases ductility also
	2013.	dia=150,	wrapped in uni-	column achieved by	increases. Increase in
		250,300,450	direction.	using nonlinear	ductility depends upon
		and 600mm,		finite element	the decrease in
		and height		analysis.	compressive strength.
		450mm and			Low strength concrete
		750mm.			column exhibits higher

					ductility then high strength concrete.
2.	A. Napoli et al., 2010.	▲ ·	External Confinement by wrapping members with unidirectional CFRP layers and four longitudinal steel angles placed at the member corners and glued to the concrete substrate by means of an epoxy adhesive.	force and cyclically reversed horizontal	The high side ratio in the FRP confinement leads to a non-negligible ductility enhancement of the columns.

2.7 Loading

In all real framing systems, columns are not only axially loaded, they can be subjected to various loads and combination of loads. Currently, the study of RC columns confined with composite materials subjected to eccentric compression is relatively new and limited. FRP confinement systems are less effective under eccentric loading compared to concentric one. The efficiency of the RC columns confined with CFRP membranes is reduced if the load eccentricity increased. The failure of the eccentrically loaded elements occurred at the compressed side. Failure of the FRP confined RC elements depends on the failure of the FRP composite membrane.

S.no	Name Of The Author and Year	SpecimenDetail(L×D ora×a×L)	Wrapping detail	Methods adopted	Remarks
1.	Muhamma d N. Hadi et al., 2014.	Square column of size (200×00)mm and corners are rounded for 32mm radius.	wrapped at $\pm 45^{\circ}$ orientation in	The specimens are tested for 3 eccentricities: 0 (concentric), 25, and 50 mm up to failure.	When the eccentricity is large, the load carrying capacity is significantly reduced because both axial action and bending action are induced. The increase in the applied load results in lateral deflection increases and the total eccentricity of the applied load is thereby increased. This in turn increases the internal moment of the column and causes compressive strength capacity reduction. When columns were tested under eccentric loading, the contribution of vertical and 45angle layers was evident in resisting the bending moment.
2.	G. P.	Square column	Two layers of	The strength	strength and ductility

Lignola et	of size	CFRP used in	improvement	increases of members,
al., 2007.	(36×36)cm	unidirection.	Was relevant to the	under large eccentricities.
	with 2cm		specimens loaded	
	rounded corner.		with smaller	
			eccentricity, the	
			ductility	
			improvement was	
			relevant to the	
			bigger eccentricity.	
			The ductility	
			measurements have	
			been estimated using	
			curvature ductility	
			indexes.	

2.8 Load Carrying Capacity

A recent strengthening technique based on near-surface mounted (NSM) laminate strips of carbon fiber reinforced polymer (CFRP) has been used to increase the load-carrying capacity of concrete structures by introducing laminate strips into pre-cut grooves on the concrete cover of the elements to be strengthened.

S.	Name Of	Specimen			
no	The Author	Detail	Wrapping	Methods adopted	Remarks
	and Year	(L×D or	detail		
		a×a×L)			
1.	Mieczyslaw	RC column	5mm thickness	External adhesive	The application of CFRP
	Kaminski	with	fibers are used	bonding of	strips to strengthen
	et al., 2006.	(80×150)mm	as strips and	longitudinal CFRP	compressed elements
		are used.	wraps.	strips, external	increases their boundary
				adhesive bonding of	load-carrying capacity
				longitudinal CFRP	that decrease the
				strips and	longitudinal strains in
				transverse CFRP	relation with control
				band wraps, external	elements at an equal
				adhesive	increase of longitudinal
				bonding of	force. The use of
				longitudinal CFRP	additional external CFRP
				strips and transverse	band wraps prevents
				wrapping, external	debonding of a strip till
				adhesive bonding of	the moment of the wrap
				transverse CFRP	breaking and the element
				wraps are the	damage.
				strengthening	
				technics used.	
2.	N. Chikh et	```	Specimens were	The load was applied	The confinement
	al., 2011.	and	loaded under a	at a rate of 0.24	provided by the CFRP
		(1000×197)mm	monotonic uni-	MPa/s and recorded	improved the load-
		circular column	axial	with an automatic	carrying capacity of the
		and	compression	data acquisition	column. The effect of
		(140×140×280)	load up to	system. Axial and	increasing the
		mm square	failure	lateral strains were	strengthened columln's
		column with	unidirectional	measured using	slenderness ratio (≅2÷7)
		50Mpa grade	wrap with land	extensometers.	results on overall in small
		concrete.	3 layers.		effect on its load carrying
					capacities.

2.9 Slenderness Ratio

No distinct post behaviour is observed as the slenderness ratio increases. The effect of increasing the strengthened column's slenderness ratio (\cong 2÷7) results on overall in small effect on its load carrying and deformation capacities.

S.no	Name Of The Author and Year	SpecimenDetail(L×Da×a×L)	Wrapping detail	Methods adopted	Remarks
1.	E EEtman et al., 2002.	2 square column of 150mm length and 2 circular column of 150mm diameter.	The column was then wrapped with the CFRP sheet; the end of the sheet overlapped 100 mm.	The vertical longitudinal strain, for the square specimens, was measured using 4, 30 mm gauge Length. Lateral strains were measured on the concrete face at mid height using 2 electrical strain gauges glued on two opposite sides.	The increase in slenderness ratio, reduces the ultimate strength and strain of the unwrapped columns. For the jacketed columns, the effect of slenderness ratio would be verified after the specimens reach a stress level equal to or over the concrete compressive strength, as the increase in slenderness ratio reduces the stiffness of the section.
2.	RUXAND RA OLTEAN et al., 2011.	6 square columns of 250mm dimension.	1 and 2 layers of CFRP strips.	The experimental study was performed under static loading as the specimens being subjected to a monotonous and uniform load up to the peak load.	The efficiency of the RC columns confined with CFRP membranes is reduced if the slenderness are increased.

3.0 Wrapping Configuration

Wrapping the beam in the hoop direction with CFRP did not improve significantly the performance of the beam under flexural loading. The presence of CFRP straps that were applied longitudinally in Beam produced a large improvement in the load carrying capacity of the column. Increasing the number of the CFRP layers resulted in increasing the load and the performance of the columns. Zero degree fiber orientation has been observed to be the most effective for models under pure axial load and 90 degrees fiber orientation was the most effective for eccentric loading.

T A	Name Of The Author and Year	Specimen Detail (L×D or a×a×L)	Wrapping detail	Methods adopted	Remarks
1. P ag	PezhmanT ghia et 1., 2013.	Circular columns with dia=150, 250,300,450 and 600mm, and height 450mm and 750mm.	0.165mm thick fibers are wrapped in uni- direction.	Structural behaviour of the RC short column achieved by using nonlinear finite element analysis.	direction increases the

	D' ID		1	a :	
2.	RiadBenz aid et al., 2013.	Circular specimen of size (160×320)mma nd square specimen of size (140×140)mm.	1mm thickness fibers wrapped at 45° orientation.	Specimens were loaded under a monotonic uni- axial compression load up to failure. The compressive load was applied at a rate corresponding to 0,24MPa/s and was recorded with an automatic data acquisition system.	For normal concrete the increase in strength for 1 layer is 141% and 46% for 3 layers of CFRP jackets, for medium- strength concrete were 33% and 17% for 1 layer, 72% and 30% for 3 layers of CFRP jackets., for high-strength concrete specimens with circular and square cross-sections, average 20% and 17% for 1 layer, 50% and 24% for CFRP jackets of 3 layers, respectively.
3.	Muhamm ad N. Hadi et al., 2014.	Square column of size (200×00)mm and corners are rounded for 32mm radius.	Fibersarewrapped at $\pm 45^{\circ}$ orientationinhoop direction.	The specimens are tested for 3 eccentricities 0 (concentric), 25, and 50 mm up to failure.	The combination of 45° CFRP layers and one hoop layer was expected to have the largest ductility. The combination of $\pm 45^{\circ}$ CFRP layers and one hoop layer did not show any increase in deflections of the columns under both concentric and eccentric testing. The enhancement in ductility was more evident than the enhancement in strength for all types of wrapping, in particular for columns wrapped with only hoop-oriented layers.

4.0 Conclusion

Carbon fibre has high tensile strength and modulus of elasticity and a brittle stress-strain characteristic. Wet layup method is most widely used for wrapping. Shape of the specimen place an important role in construction. Additional research is needed to determine the feasibility of carbon-fibre concrete on an economic basis. A more attention should be taken for finding the fire-resistance properties of carbon-fibre composites need to be evaluated.

5.0 References

- 1. Giuseppe campione, Giovanni minafo, Nunziomiraglia, Maurizio papia, Flexural behavior of RC columns externally wrapped with FRP sheets, DICA University of Palermo, Italy VialedelleScienze 90128.
- 2. Chikh N., Mesbah H., Gahmous M., Benzaid R. Performance of externally CFRP confined RC columns with changes in thickness of the wrap, slenderness of the column and shape of the section, International seminar, Innovation & valorization of Civil Enginnering& construction materials, (2011).
- 3. Hadi M.N.S., KusumawardaningsihY,Experimental investigation of FRP wrapped RC circular and square hollow columns, Challenges, Opportunities and Solutions in Structural Engineering and

Construction – Ghafoori (ed.) Taylor & Francis Group, London, ISBN 978-0-415-56809-8, PP. 235-240, (2010).

- 4. Olivova K., BilcikJ.Strengthening of concrete column with CFRP, Slovak journel of civil engineering, (2009).
- 5. AlperenCopur, SonerGuler, FatihOzalp and MetinAydogan,Performance of CFRP wrapped UHPC Columns under Axial Compression, InternationalJournal of Chemical, Environmental & Biological Sciences (IJCEBS) Volume 1,Issue 1, ISSN 2320–4087, PP: 57-60, (2013).
- 6. Khan A.R., Zafar N.S., Compressive Strength of Concrete Cylinders Confined with CFRP Wraps,5th International Conference on FRP Composites in Civil Engineering,September 27-29,Beijing,China, (2010).
- 7. Michael eyring gibbon, Behavior of corroded reinforced concrete columns with carbon fiber reinforced polymer jackets and columns with internal glass fiber reinforced polymer spirals, The university of Utah, (2011).
- 8. Ciprianmurariu, 'Behavior of reinforced concrete rectangular columns strengthened using CFRP'.
