

International Journal of ChemTech Research

CODEN(USA): IJCRGG, ISSN: 0974-4290,

ISSN(Online):2455-9555

Vol.10 No.7, pp267-273,2017

ChemTech

EPR and Optical Absorption studies on Vanadium doped Glasses

^{*1}M.Sugathria, ²K.Jyothib, ³P.Madhusudana Rao, and ⁴B.AppaRaod

¹Department of Physics, RayalaseemaUniversity, Kurnool, India ²Department of Physics.Government college Rajahmundry, India ³Department of Physics, JNTUH College of Engineering, Kukatpally, Hyderabad-500085, India

⁴Material Science Department, Osmania University, Hyderabad-500 007, India

Abstract:Electron Paramagnetic Resonance (EPR) and Optical Absorption studies on glasses $20Li_2O - 10 Na_2O - (70-X) B_2O_3$ doped with $X=V_2O_5$ are reported. EPR spectra of V⁴⁺ ions doped in the glass system exhibited peak at g = 1.98. Spin Hamiltonian parameters g_{\parallel} , g_{\perp} . IA_{II} , IA_{\perp} , IA_{\perp} , dipolar hyperfine coupling parameter P, and Fermi contact interaction parameter K, have been calculated and found that these parameters are dependent upon alkali ion concentration in the glass system and the VO²⁺ ion in an octahedral coordination with a tetragonal compression. When the concentration of V_2O_5 is increased from 0.2 to 1.0 mole %, the Values of g₁₁, P decrease; values of K increase and values of g₁, A₁₁, A₁ are found to be constant. These values show that there is a tetragonal distortion of V^{4+} in Borate Glasses. Optical absorption spectra recorded in the range 300 - 900nm at room temperature showed a band at 800 to 850nm which is attributed to ${}^{2}B_{2} \rightarrow {}^{2}B_{1}$ and ${}^{2}B_{2} \rightarrow {}^{2}E$ transitions. Keywords: EPR, Spin Hamiltonian Parameters, Lithium Borate Glass.

M.Sugathria et al/International Journal of ChemTech Research, 2017,10(7): 267-273.
