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Abstract : Thalassemia is genetic disorder caused by globin mutation that reduces synthesis of 

globin chains. Chronic anemia is main character of beta thalassemia major that in some 
occasions required multiple transfusion to overcome the low hemoglobin level. This repeated 

treatment results in iron overload that is responsible to catalyze the production of reactive 

oxygen species, ROS. Antioxidants prevent further impact of ROS, firstly by iron 
scavenging.Superoxide dismutase plays role as the first line defense, while glutathione 

peroxidase plays important role in erythrocyte defense. Catalase, thioredoxin and 

peroxiredoxin are also included in enzymatic antioxidant system against ROS in beta 
thalassemia major. 

Keywords : Thalassemia major, multiple transfusion, iron overload, enzymatic antioxidant, 
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Introduction 

Thalassemia is one of hemoglobinopathy with high prevalent inthe world. Around 56.000 people are 

diagnosed to have thalassemia major, while half of which are beta thalassemia major
1
. Beta thalassemia major 

is characterized by chronic anemia as a result of unbalancehemoglobin (Hb) structure. The structure has excess 

𝛼-globin chain that remains unpaired and transformed into hemichrome when erythropoiesis occurs. The 
hemichromes bind to membrane protein and trigger coagulability factors activation. Hb dissociation also leases 

iron from heme and induces synthesis of reactive oxygen species (ROS)
2
. 

Iron is found mainly in erythrocytes complex and bound to heme in hemoglobin structure.When 

erythrocytes rupture, hemoglobin is recycled by macrophages in the reticuloendothelial system. Iron is released 

by heme oxygenase (HO-1) and bound to transferrin or ferritin pools. Iron has ability to play role in redox 
activity, either in ferrous (Fe

2+
) or ferric (Fe

3+
) form. Iron also catalizes generation of free radicals by 

interacting with superoxide radicals, a primary free radicals that is produced naturally in normal metabolism. 

Fenton reaction and Haber-Weiss reaction are known to be common mechanisms for iron to generate hydroxyl 

radicals. It is dangerous that iron in high level triggers more oxidative damages in cellular activity. 
Therefore,regarding ironquantity and distributionis necessary to control its toxicity in the body

3
. 

Unstable Hb structure and multiple transfussion allows high production of ROS resulting in systemic 
tissue damage. Heme and iron from degraded Hb can exacerbate oxidative stress in beta thalassemia major

4
. 

ROS which is produced from several metabolism reactions, including ineffective erythropoiesis and hemolysis, 

continuously exposes erythrocyte. Several enzymatic antioxidants that play role in erythrocyte are catalase, 
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glutathione peroxidase, and peroxiredoxin-2. Under hypoxic condition, autooxidation of Hb occurs and triggers 

ROS generated more. Over production of ROS is early step to cause cellular damage by oxidative 

stressenhancing erythrocyte aging
2,5

. Oxidative stress in thalasemia is a result of iron overload. This is due to 
short survival of mature red blood cells (RBCs), hemolysis, multiple blood transfusion, and high absorption and 

accumulation of iron. Treatment of iron chelators and antioxidants, either separately or in combination, helps to 

improve oxidative stress
6
. 

Requirement of Transfusion and Iron Metabolism 

In beta thalassemia major, erythrocytes are produced in massive capacity but do not mature, and mostly 
die in erythroblast stage

7
.Multiple blood transfusion is acquired to overcome low Hb level. Iron overload is 

known to be negative side effect of multiple transfusion. The iron in transfused blood is absorpted by digestive 

organ and cause accumulation of iron that catalyzes ROS production. This condition supports creating pro-
oxidantenvironment and facilitates oxidative stress. Oxidative stress can cause growth failure, liver, 

cardiovascular, endocrine, and other complications in beta thalassemia major patients
8
. 

Main mechanism in generating ROS is ineffective erythropoiesis which causes chronic anemia and iron 
overload in thalassemic patients. ROS which is generated from free globin chains and labile plasma iron (LPI) 

contributes to oxidative damage in cells and tissues. These damages can exacerbate complications in 

thalassemic patients.In patient with thalassemia major, reticuloendothelial system and parenchyma are targets of 
iron overload. The rate of iron loading in thalassemia major ranging between 0.3 and 0.6 mg/kg/day.Major 

cause of mortality in transfusion dependent thalassemia (TDT) is cardiac siderosis
9
.Excessive iron is known to 

be accumulated in some organs, such as liver, heart, endocrine glands, resulting oxidative damage and severe 
complication in patients with thalassemia major

10
. 

During erythropoietic, erythroid regulator synthesizes erythroferrone (ERFE), a protein supressing 

hepcidin synthesis. In this condition, iron level increases as preparation to produce erythrocytes. Unfortunately, 
in thalassemia major, this is pathological mechanism of EFREin triggering iron overload

11
. Hepcidin binding to 

ferroportin plays important role in iron metabolism.When erythrocytes undergo hypoxia, hepcidin level 

decreases, stabilizes ferroportin that promotes iron absorption increases, and activity of reticuloendothelial 
system releasing iron increases.Non-transferrin bound iron (NTBI), whichis form of excess iron, has strong 

ability to catalize formation of formation of hydroxyl radicals
9,10

. Production of hepcidin increases as deposit 

iron level higher. This condition makes ferroportin internalized and degraded
12

. 

Iron Overload and ROS 

Free radicalis molecule with unpaired electron that is considered to be reactive in certain environment. 

ROS is a group of reactive molecule in pro-oxidant environment that is responsible to cause oxidative damage. 

Free radicals in biologicalsystems include superoxide ion radical (O2•
−
), hydroxyl radical (OH•), peroxyl 

(ROO•), alkoxyl radicals (RO•) and a single oxygen (
1
O2) (Fibach, 2010).The superoxide ion radical is primary 

product of oxidative reaction.This ROS should be neutralized by superoxide dismutase (SOD), unless it 

produces H2O2, a nonradical ROS. In pro-oxidant environment, iron catalyzes H2O2 to produce hydroxyl radical 

by either Fenton reaction or Haber–Weissreaction. Hydroxylradicals cause oxidative damage more than 
superoxide radical, as no radical scavenger known to cut its reaction.Production of ROS can be limited by 

ironchelators
13

. 

Oxidative damage can be induced as high level iron migrates to some organs.Iron from blood 

transfusion is absorpted by intestine to liver, and accumulated in the reticuloendothelial system and then 

transferred to parenchymatous organs, such as the heart and endocrine organs. Therefore, myocardiopathy, liver 

cirrhosis, and endocrine complications are among the long term consequences of iron overload. The excess iron 
is deposited in transferrin. When transferrin reaches its saturated capacity, iron is exported as non-transferrin 

bound iron (NTBI) which is highly toxic
14

 and its redox active form labile plasma iron (LPI) in the plasma and 

as labile iron pool (LIP) in the cells
15

. Ferritin has capacity as iron storage up to 4500 iron atoms. Some proteins 
contribute in iron transport, such as transferrin (Tf), Transferrin receptor (Tfr), Divalent transporter 1 (DMT1), 

heme carrier protein (HCP1), and ferroportin (FPN)
16

. Iron exporter is function of FPN, while cell membrane 

iron transportation is function of Tf, Tfr, and HCP1
17

. 
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Erythrocyte is responsible to transport oxygen and carbon dioxide around the body. O2 binding affinity 

is deacreased when heme iron (Fe
2+

) is oxidized to iron (Fe
3+

) to form methemoglobin
18

. In reduced level of Hb, 

iron within prostethic group group of Hb need to be noticed because of its ability to catalyze ROS production
19

. 
Hemoglobin is considered to be source of oxidants in erythrocytes. In 24 hours normal cycle, 3% of Hb 

undergoes autooxidation and generates superoxide radicals. Ferric form from methemoglobin is also oxidant 

source that has possibility to produce hydroxyl radicals through Haber-Weiss and Fenton reaction. Haber-Weiss 

reaction is limited by activity of ferritin. Reaction between Hb and H2O2 contributes to heme degradation and 
release of free iron

18
.  

Enzymatic Antioxidants 

Antioxidant is defensive system in the body against ROS. There are two type of antioxidants, enzymatic 

and nonenzymatic antioxidants that are either obtained from the diet or from selfsynthesis
20

. Enzymatic 
antioxidants remove ROS by metabolic conversion. Superoxide dismutase, glutathione, catalase, and 

thioredoxin systems are the main cellular enzymatic antioxidants systems
21

 (Figure 1).Enzymatic antioxidant 

system is considered to be biomarker for oxidative stress, including in thalassemia. Erythrocytes is known to 

have selfprotective enzymatic antioxidants systems, including superoxide dismutase (SOD), catalase (CAT), 
glutathione peroxidase (GPx), and glutathione reductase (GR), and nonenzymatic antioxidants systems, 

including vitamins EandC. This enzymatic mechanisms allow erythtocytes to minimize oxidative damage by 

ROS when ineffective erythropoiesis and hemolysis occur. Furthermore, it is helpful to prevent other tissues 
and organs damage

22
. 

 

Figure 1. (a) Scheme of enzymatic antioxidants against ROS production; (b) Mechanism of glutathione 

system; (c) Mechanism of thioredoxin system. 

Superoxide Dismutase 

Superoxide radical is generated naturally by respiration cycle and stay for long time in body. 
Superoxide dismutase is responsible to catalize superoxide radicals to hydrogen peroxide. Iron in ferric form 

(Fe
3+

) reacts to superoxide radicals, resulting Fe
2+

 and oxygen by Haber–Weiss reaction. The reduced iron then 

reacts to hydrogen peroxide to produce Fe
3+

, oxygen hydroxide, and hydroxyl radicals by Fenton reaction
6
. 

Hydroxyl radicals is very speedy reacting with the surrounding molecules, including  protein, lipid or 

DNA
16

.The higher iron produced, the higher DNA damage occurs
23

. SOD activity can be found in 

mitochondrial, cytoplasmic, and extracellular.Superoxide is produced by one electron reduction of oxygen. 
Accumulaton of superoxide is prevented as its harm to cause oxidative stress

24
.  

SOD1 (CuZn-SOD ), SOD2 (Mn-SOD), and SOD3 (EC-SOD) are three forms of SOD. SOD1 is 

primary antioxidant to maintain erythrocyte lifespan. Under lack of SOD1 condition, erythrocyte is more fragile 
to suffer oxidative damage, resulting in ineffective erythropoiesis

25
. SOD1, SOD2, and SOD3 exists exclusively 

in intracellular cytoplasmic spaces, mithocondrial spaces, and extracellular spaces, respectively
26

. Pavlova et 
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al.investigated SOD level in beta thalassemia major patients decreases more than 30% compared to controls

27
. 

SOD level in thalassemic patients can reach 1,5times lower than control
28

. High production of ROS might 

deplete SOD activity and cause oxidative stress. 

Glutathione 

Enzymatic system of glutathione is known to be major protective antioxidant mechanism. Glutathione 
in reduced form, GSH, donates electron to scavenge ROS by activity of some enzymes, including glutathione 

peroxidase (GPx) and glutathione-S-transferase (GST). Consequently, GSH is oxidized to GSSG. Glutathione 

reductase (GR) enables GSSG to convert to GSH. Ratio of GSH/GSSG is commonly used as indicator of 
oxidative stress. The more GSH converts to GSSG, the higher oxidative stress indicated. The intracellular GSH 

level depends on levels of GSH synthesis, utilization, and recycling. GPx and GST, two enzymes in glutathione 

system, have different mechanism against ROS. GPx plays role as antioxidant that reduce H2O2 to H2O, while 
GST plays role in detoxifying xenobiotics, including metabolites from oxidative reactions

20
. The study of GPx 

activity was conducted and showed beta thalassemia major had lower GPx level than controls. Excessive 

hydroxyl radical production inhibites GPx activity
29,30

. 

Catalase 

Catalase is intracellular enzyme containing four porphyrin heme groups
31

. This enzyme catalyzes H2O2, 
product of SOD acticity, to H2O in cells. The lower activity of catalase, the higher H2O2concentration

32
. This 

condition is in accordance with oxidative stress condition and causes damage of oxidation sensitive tissues that 

may contribute to the manifestation of various diseases such as diabetes mellitus and anemia
33

. Catalase activity 
in beta thalassemia patients was lower than control. Activity of lipid peroxidation is considered to be associated 

with catalase activity
34

. 

Thioredoxin 

Another protective enzymes in RBCs is thioredoxin system
13

. This system includes thioredoxin (Trx), 

thioredoxin reductase (TrxR, TXNRD, TXN, TR) and NADPH, that is responsible to reduce oxidized proteins 
and role as electron donor to some enzymes, such a peroxiredoxin

35
. Oxidized form of thioredoxin is reduced by 

thioredoxin reductase, a selenium-containing flavoprotein
36

.Peroxiredoxin (Prx) responses to catalytic activity 

of hydrogen peroxide
37

. A pair of cysteine residues controls Trx activity in its active site, which exists in the 
oxidized (disulfide) or reduced (dithiol) state. This redox mechanisms allows Trx to maintain oxidative status in 

cell
38

. Thioredoxin system is essential by its antioxidative, protein-reducing, and signal-transducing activities to 

maintain redox status, immune function, and other diseases including cardiovascular disease
39

.Previous study 
shows Trx level was lower in beta thalassemia patient. Decreased activity of Trx indicates higher oxidative 

stress occurs
36

. 

Conclusion 

Heme undergoes degradation and releases iron catalyzing ROS production. Multiple transfusion should 

be received to increase Hb level in thalassemic patients. Negative effect of iron content in blood transfusion 
should not be neglected. Frequent transfusion allows iron absorption increased and contributes in generating 

higher level of ROS. SOD and GPx are main free radicals scavengers in erythrocyte. Oxidative damage begins 

when antioxidants activity is lower than free radical attacks. Thus, patients with beta thalassemia major might 

suffer liver, heart, endocrine glands dysfunction and other clinical complications. Advanced research of iron 
chelation is still in progress and is important to remark. 
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