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Abstract : In this paper, we present a few selected applications of Numerical methods to other 

parts of mathematics and to various other fields in general. Numerical methods are rapidly 

moving into the mainstream of mathematics mainly because of its applications in diverse 
fields which include chemistry, electrical engineering, operation research. The wide scope of 

these and other applications has been well documented. 
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1.Introduction 

Numerical methods provide a way to solve problems quickly and easily compared to analytic solutions. 

Whether the goal is integration or solution of complex differential equations, there are many tools available to 

reduce the solution of what can be sometimes quite difficult analytical math to simple algebra.  

2. PDEs Contains Two Main Aspects 

1. Analytic methods   

2. Numerical approximation.  

Both the mathematical analysis of the PDEs and the numerical analysis of methods rely heavily on the 

strong tools of functional analysis. Numerical approximation of PDEs is a cornerstone of the mathematical 

modeling since almost all modeled real world problems fail to have analytic solutions or they are not known in 
the scope of pure mathematics because of their complexity

1
. The history of numerical solution of PDEs is much 

younger than that of analytic methods, but the development of high speed computers nowadays makes the 

advent of numerical methods very fast and productive. On the other hand, the numerical approximation of PDEs 
often demands knowledge of several aspects of the problem, in order to understand and interpret the behaviour 

of expected solutions, or the algorithmic aspects concerned with the choice of the numerical method and the 

accuracy that can be achieved
2
. The aim of this study is to discuss some modeling problems and provide the 

knowledge of Finite Element techniques for the numerical approximation of the model equations. Especially the 
theory and application of finite element methods is a very nice combination of mathematical theory with aspects 

of functioning, analysing, and applications.  

3. Multiple Scales in the Modelling of Real World Problems 

Most of the phenomena in nature are concerned with the behaviour of a big number of individual 
objects which are always in a close interaction with each other. On the other hand, the important features are 

      
 

 
 
 

International Journal of ChemTech Research  
                CODEN (USA): IJCRGG,     ISSN: 0974-4290,      ISSN(Online):2455-9555  

                                                            Vol.10 No.10, pp  248-256,            2017 
 



Geetha N.K et al /International Journal of ChemTech Research, 2017,10(10): 248-256. 249 

 

visible on a much coarser macro scale, where a mean behaviour of objects is observable. Let us consider a very 

short list of fields where such behaviour arises in real life problems and where the mathematical investigation is 

needed to answer the questions stated by the problem. 

3.1 Meteorology 

It deals with the interaction of air (oxygen, nitrogen, ozone, etc.) and water molecules, as those 
exchanges are responsible for the behaviour of macroscopic variables like temperature, pressure humidity, and 

wind. The main objective of meteorological stations is to develop a system which permits reliable monitoring of 

climate changes
3
. The monitoring is of high importance for like airports, offshore wind parks, etc. 

 

Fig.1 Air molecules in atmosphere 

3.2 Civil Engineering 

In many aspects of our life a huge amount of different materials are used. Glass, wood, metals, 
concrete, which are directly use almost every minute in our everyday life. Thus, the modification of materials 

and prediction of their properties are very important objectives for the manufacturers. In order to produce high 

quality materials the engineers in industry, among other problems, are very much interested in the elastic 
behaviour or loading capacity of the material

4
. While it is known that the bonding forces between the atoms of 

the material are responsible for their physical and chemical properties. So, to manufacture a new product with 

higher quality, a detailed investigation of the material on the atomic level is not required in most cases. A 

mathematical model is needed for the quantitative description of the change of material properties under 
external influences. The concepts of differential equations come to help us as an excellent tool for the 

development of such a model. 

 

Fig. 2. Crystal Lattice 

3.3 Traffic Flow 

People spend several hours on their way back home because of the traffic jams on the roads after their 
hectic work. During the driving process every driver has one’s own behaviour which depends on the objectives 

of being fast and avoiding accidents. So, in this way a driver interacts with other cars. At all times drivers drive 

unthinkingly in such a manner as to avoid the traffic jams on the roads
5
. Again we need the help of 

mathematical model which can provide the understanding necessary to make the life of drivers more pleasant. 

The developed model can serve as ancient model also for other application problems. For example, the traffic 

jam model is similar to gas flow models which allow for the appearance of shock waves. In aircraft traffic, 

analogous problems cause noise pollution near airports. 

 



Geetha N.K et al /International Journal of ChemTech Research, 2017,10(10): 248-256. 250 

 

4. Mathematical Modeling 

4.1 Density Flux and Conservation 

The simplest mathematical models can be developed with the help of density, flux and a conservation 

law. As examples of a density we can consider some space quantities which can vary in time. Quantities like 

concentration of a substance or the heat density in a body are two simple examples. 

 

Fig.3. Heat transfer 

The mass density is, for sure, the simplest example of density. To define the mass density (density of a 
material), we consider a point P = (x; y; z) in the space, and let _V be a small volume element containing P

6
. 

 

The average mass density _ in _V at time t is equal to the mass contained in _V (which is proportional 
to the number of molecules), divided by the volume of j_V j: 

 

In order to determine the mass density _(P; t) in the point P at time t, we should allow _V to become 
smaller and smaller. 

4.2 FLUX 

It is known that single objects like molecules or organisms are in continuous movement. So, we want to 

define the flow vector (flux) q(P; t) in a point P at time t to be the rate and direction of average movement of the 
objects. Like in the case of density, the flux can be also defined through a limiting process. 

 

Fig.4. Flux 
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5.Pdes as a Modeling Tool 

5.1 Heat Conduction Equation (1D) 

If the left end of the rod is at a higher temperature, then heat energy will be transferred from left to right 

across the rod toward the colder part. In conduction process motion of the material as a whole is not 

considered
7
. Thermal energy is conserved in the conduction process. The content of energy depends on density 

and specific heat cp depends on the temperature T via The heat flux tries to equi-distribute heat over a piece of 

material. Thus, heat flows from hotter to cooler part. Fourier's law governs the conduction process, in a 

homogeneous medium the rate of heat flow is directly proportional to the temperature difference along the path 
of heat flow, 

 

 

Where k > 0 is a material parameter and is called the thermal conductivity. The governing equation for one-

dimensional heat conduction is given by, 

 

6. Galerkin Method 

Galerkin methods are used for converting a continuous operator problem to a distinct problem. It is the 

method of applying the variation of parameters to a function space, by transforming the equation to a weak 
formulation.  

6.1 Introduction with an Abstract Problem 

6.1.1 A Problem in Weak Formulation 

Let us introduce Galerkin's method with an abstract problem posed as a weak formulation on a Hilbert space , 

namely, 

find such that for all  . 

Here, is a bilinear form (the exact requirements on will be specified later) and is a bounded 

linear functional on . 

6.1.2 Galerkin Dimension Reduction 

Choose a subspace of dimension n and solve the projected problem: 

Find such that for all  . 

The equation has not changed and the spaces have changed, converting the problem to a finite-

dimensional vector subspace allows us to numerically compute as a finite linear combination of the basis 

vectors in 
8
. 

The key property of the Galerkin approach is that the error is orthogonal to the chosen subspaces. Since 

, we can use  as a test vector in the equation. We get the Galerkin orthogonality relation for the 
error, which is the error between the solution of the original problem, , and the solution of the 

Galerkin equation,  

http://en.wikipedia.org/wiki/Variation_of_parameters
http://en.wikipedia.org/wiki/Weak_formulation
http://en.wikipedia.org/wiki/Weak_formulation
http://en.wikipedia.org/wiki/Weak_formulation
http://en.wikipedia.org/wiki/Hilbert_space
http://en.wikipedia.org/wiki/Bilinear_form
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6.1.3 Matrix Form 

In Galerkin's method the production of a linear system of equations is needed, we build its matrix form, 
which can be used to compute the solution by a computer program. 

Let be a basis for . Then, it is sufficient to use these in turn for testing the Galerkin 

equation, i.e.: find such that 

 

 

We expand with respect to this basis, and insert it into the equation,  

 

This previous equation is actually a linear system of equations , where 

 

6.1.4 Symmetry of The Matrix 

The matrix of the Galerkin equation is symmetric if the bilinear form is symmetric. 

6.1.5 Analysis of Galerkin Methods 

As per symmetric bilinear forms, 

 

The application of the standard Galerkin method becomes much easier. Petrov–Galerkin method may 

be required in the non-symmetric case
9
. The analysis of these methods proceeds in various steps. It is to be 

showed that the Galerkin equation is a well-posed problem in the sense of Hadamard. 

The analysis will mostly rest on two properties of the bilinear form, namely 

Boundedness: for all holds  

for some constant  

Ellipticity: for all holds  

for some constant  

The norms in the following sections will be norms for which the above inequalities hold (these norms 

are often called an energy norm). 

 

 

http://en.wikipedia.org/wiki/System_of_linear_equations
http://en.wikipedia.org/wiki/Basis_%28linear_algebra%29
http://en.wikipedia.org/wiki/Symmetric_matrix
http://en.wikipedia.org/wiki/Bilinear_form
http://en.wikipedia.org/wiki/Petrov%E2%80%93Galerkin_method
http://en.wikipedia.org/wiki/Well-posed_problem
http://en.wikipedia.org/wiki/Hadamard
http://en.wikipedia.org/wiki/Bilinear_form
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6.1.6 Well-Posedness of the Galerkin Equation 

Since , boundedness and ellipticity of the bilinear form apply to . Therefore, the well-
posedness of the Galerkin problem is actually inherited from the well-posedness of the original problem. 

7 Quasi-Best Approximation (Céa's Lemma) 

The error between the original and the Galerkin solution admits the estimate. 

 

This means, that up to the constant , the Galerkin solution is as close to the original solution 

as any other vector in . In particular, it will be sufficient to study approximation by spaces , completely 

forgetting about the equation being solved. 

Proof 

Since the proof is very simple and the basic principle behind all Galerkin methods, by boundedness of 

the bilinear form (inequalities) and Galerkin orthogonality (equals sign in the middle), we have for arbitrary 

: 

 

Dividing by  and taking the infimum over all possible yields the lemma. 

7.1 Application of Galerkin Method: Example 1 

Here, we consider a beam which is simply supported at both ends, as shown in Fig. The overall length 

of the beam is L
10

. 

 

Fig.5. Load distribution 

Here z, we assume: 

-Material is isotropic. 

-Normal uniform load of intensity q0 is applied over the length of the beam. 

For such a system, the governing equation for normal deflection is: 

EI(d
4
w/dx

4
) ‐ q0 = 0. 

The accuracy of Galerkin solution for the above eq. with exact solution. 

In such a case, the boundary conditions are: 

– Displacement at ends of the beam is zero, i.e. w = 0 at x = ±L/2. 

– Moment at both beam ends is zero. 

At this stage, we select a displacement function, which satisfies the kinematic boundary conditions.  
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Thus, we assume: 

w
o
(x) = A cos (πx/L) 

• Such a displacement function satisfies the displacement BC at both ends of beam. Substituting this function in 

governing equation gives us error in the force. The relation for this error is: 

E[w(x)] = AEI∙(π/L)
4
∙ cos (πx/L) ‐ q0 

• The virtual work done by this error force as defined in the above eq , when integrated over the length of beam 

is equal to zero. So, 

∫ΩE[w(x)]∙ εw1(x) dx = 0, where integration limits are ‐L/2 and L/2. 

or, 

∫Ω [AEI∙(π/L)
4
∙ cos (πx/L) ‐ q0 ]∙ εw1(x) dx = 0.  

• At this stage, we chose w1 as defined below: 

w1(x) = A1 cos (πx/L) 

• Thus, the above eq. can be rewritten as: 

∫Ω [AEI∙(π/L)
4
∙ cos (πx/L) ‐ q0 ]∙ ε A1 cos (πx/L) dx = 0.  

• From the above eq., we get: 

A = 4q0L
4
/(π

5
EI)  

• Thus, the approximate solution as per Galerkin method is: 

w(x) = [4q0L
4
/(π

5
EI)] cos (πx/L) 

• At x = 0, the beam deflection is: 

wGalerkin(0) = 0.01309[q0L
4
/(EI)] 

• Also, the exact solution for beam deflection is: 

wExact(0) = 0.1302 [q0L
4
/(EI)] 

• Comparing exact and approximate values (as per Galerkin method), we see the two answers are fairly close to 

each other. To improve the accuracy of the solution we may use more than one term in the assumed solution 

form. Lets assume, 

w
o
(x) = A1 cos (πx/L) + A3 cos (3πx/L) 

• Such an assumed expression for w(x) satisfied the kinematic boundary conditions at both ends of the simply 

supported beam. At this stage, we also assume an expression for virtual displacement. 

w1(x) = B1 cos (πx/L) + B3 cos (3πx/L) 

• The equation for w(x), the equation for virtual displacement, w1(x), also satisfies kinematic boundary 

conditions. 

• At this stage, we develop an expression for virtual work over the entire domain, and equate it to zero. Thus: 
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But we know that B1, and B2 can have arbitrary magnitudes. Hence, integral of virtual work over 

domain can only be zero, if both terms in [ ] are individually zero. 

Thus, we get two parallel equations in A1, and A3. Solving for these equations gives us: 

– A1 = 4q0L
4
/(π5EI) 

– A3 = ‐A1/35 

Thus, 

w(x) = [4q0L4/(π
5
EI)] [cos (πx/L) ‐ (1/35) cos (3πx/L)]. 

• At the center, i.e. when x = 0, the value of displacement of the beam is: 

wGalerkin(0) = 0.01309[q0L
4
/(EI)] using 1‐term solution 

wGalerkin(0) = 0.01302[q0L
4
/(EI)] using 2‐term solution 

wExact(0) = 0.1302 [q0L
4
/(EI)] exact solution. 

Thus, 2‐term solution brings us remarkably close to the exact solution. 

Based on this analysis, we make following observations: 

– As the number of terms is increased in the assumed form of Galerkin solution, it approaches the exact value 

monotonically. 

– A solution with lesser number of terms represents a stiffer system vis‐à‐vis a system which has more terms. 

As number of terms increase, so does the flexibility of the system. Hence, accuracy of solution increases with 

number of terms. 
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