The association between periodontitis and polymorphism of tumor necrosis factor-α -308 in Iraqi population

*1 Ahmed Zuhair Jassim Al-waeli and FriaJameel Abd

University of Babylon/college of science /biology department, Iraq

Abstract: A patients – healthy samples collection was conducted between February 2015– May 2015 and it included 100 Iraqi patients group with periodontitis and 30 number of healthy population group from Babylon province and it was conducted in Faculty of Dentistry. Two types of samples have been taken from each subjects in study, first: pocket samples for bacterial identification, second: blood samples for DNA extraction from WBCs. PCR-RFLP have been used to detect two SNPs and in TNFα at position -308, genotype and allele frequency have been calculated by using Hardy- Weinberg equation. This study was showed that the number of aerobic bacteria in patients were $2.8 \times 10^5 \pm 187.93$ CFU/ml compare with healthy $3.1 \times 10^3 \pm 55.11$ CFU/ml this difference was significant, while the number anaerobic in patients bacteria were $1.6 \times 10^4 \pm 43.45$ CFU/ml compare with healthy $2 \times 10^2 \pm 32.78$ CFU/ml. The most bacteria isolated in this study were $P. gingivalis$ 65 in patient and 5 in healthy control, $P. intermedia$ 41 in patient and 3 in healthy control , $T. forsythensis$ 33 in patient and 1 in healthy control, Peptostreptococcus spp. 100 in patient and 30 in healthy control , $A. actinomyctemcomitans$ 47 in patient and 9 in healthy control Streptococcus spp. 44 in patient and 22 in healthy control, Staphylococcus aureus 3 in patient and 52 in healthy control. PCR-RFLP results of TNF-α -308 gene polymorphism showed the patients with genotype BB were more affected by periodontitis at 4.68 time than patients with AA and AB 0.2 and 0.67 respectively. As the first finding, we concluded that the polymorphism of TNF-α -308 associated with periodontitis in Iraqi population.

Key words PCR-RFLP, periodontitis, gene polymorphism, TNF-α -308, $P. gingivalis$.

Introduction

Periodontitis is considered as a chronic infectious disease, which is featured by destruction of collagen fibers and other matrix constituents of periodontal ligaments and alveolar bone around the teeth in conjunction with initiation of periodontal pockets. In critical cases, the disease could result to a complete loss of the teeth. It has been established that the hardness of periodontitis is based on a dynamic balance of interactions between the microbial challenge and host immune inflammatory responses. At certain point or period in host lifetime, these bacteria change in their numbers and relative proportions, and induce chronic periodontal inflammation, which may lead to teeth loss as a result of the damaging of the supporting alveolar bone. Periodontitis is a highly prevalent disease, presenting substantial economical burden. Furthermore, given a strong association of periodontal bacteria with other diseases, such as cardiovascular disease, rheumatoid arthritis or diabetes, it becomes evident that efficient periodontal treatment would be of great medical benefit to general health.
Scientists tried to make a classification of periodontal pathogens. The most popular classification has been divided into color coded clusters proposed by Socransky and his et al in 1998, and it was updated later\(^7\). This division identifies many complexes of bacteria and reflects their series of infection in the oral plaque and their association with the characters of the periodontitis. In this classification the bacteria forming dental plaque were classified into six clusters (red, orange, yellow, green, blue or Actino and purple), based on the structural features of the biofilm that extends away from the tooth surface. *Veillonellaparvulla* and *Actinomycesodontolyticus* represented the ‘purple’ form. While Species of *Streptococci* including *S. sanguis* and *S. Oralis* represented the ‘yellow’ form.

It has been established that the hardness of periodontitis is based on a dynamic balance of interactions between the microbial challenge and host immune inflammatory responses (Goutoudi \(et\) al., 2004). Virulence factors of periodontopathogens, such as lipopolysaccharides, can induce expression of inflammatory cytokine\(^8\). Cytokines are small polypeptides with a huge range of inflammatory, immunomodulatory and metabolic properties, which are secreted by a various of cells, such as the macrophage/monocyte system, dendritic cells, lymphocytes, neutrophils, endothelial cells and fibroblasts, these cytokines such as IL-1\(\beta\), IL-6 and TNF-\(\alpha\) are released from previous cells in response to LPS of bacteria\(^9\).

However, the current study was aimed to find the association between periodontitis and polymorphism TNF-\(\alpha\), to achieve that the following axes were applied: identified the types of bacteria associated with periodontitis specially anaerobic bacteria, detect the SNPs of TNF-\(\alpha\) -308 by using RFLP-PCR technique and sequencing of mentioned gene for new SNPs if they found and for proving the type of SNPs.

Materials and methods

The study included hundred consecutive patients with chronic periodontitis. All patients (25-65 years old) showed clinical evidence of alveolar loss and periodontal pockets. A 30 healthy subjects (20-60 years old) without clinical signs of periodontal disease were also selected. None of the periodontal patients or healthy subjects had received antibiotics for two months prior to specimen collection.

A questionnaire was applied to all individuals enrolled in this study, in order to obtain information

1. regarding dental history.
2. family history of periodontal disease.
3. smoking habit, as well as general health concerns.
4. Use of orthodontic appliances, chronic usage of anti-inflammatory drugs, history of diabetes, hepatitis or HIV infection, immunosuppressive chemotherapy.
5. bleeding disorders, severely compromised immune function, pregnancy or lactation were regarded as exclusion criteria. Except for the presence of periodontitis, the patients included in this study were systemically healthy. Since tobacco smoking is an important risk factor for periodontitis, we also analyzed our data taking the habit of smoking into consideration. Smokers were defined as current smokers (more than 10 cigarettes/day) and non-smokers included individuals that had never smoked. Individual consent form was obtained from all the patients and ethical committee approval was obtained before the beginning of collection of specimens.

Specimens collection

1. **Pocket swap specimens**

Specimen s were taken from subjects with complete aseptic precautions with the assistance of dentists. Initially the site of specimen collection was isolated with cotton rolls, carefully cleaned with sterile cotton. For single site, 2 sterile paper points (30-40#) were inserted to the periodontal pocket for at 30 second, the pocket depth is equal to or exceeding 3.5 -7 mm. and then transferred to Robertson’s cooked meat medium. While the healthy control subjects specimen s were collected from sub gingival material with sterile paper points and transferred to Robertson's cooked meat media\(^10\). The medium with specimen s directly transported to the laboratory in 1-2 houses.
2- Blood specimens

Five milliliters of venous blood were obtained from each subject, it was put into EDTA tubes. Blood in the EDTA tubes was stored in - 20°C in order to be used later in genetic study.

Processing of specimens

1- Pocket specimens

One Inoculum from Robertson’s cooked meat medium after shaking by Vortex for 1 mint was directly transported to three different media:

Frist: Brucella blood agar or blood agar (BBA) supplemented with hemin and vitamin K1(menadione) for isolation of strict aerobic bacteria. The medium incubated aerobically and anaerobically at 37°C for 5-7 days.

Second: Brucella blood agar or blood agar (BBAK) supplemented with hemin and vitamin K1(menadione) and Kanamycin for isolation facultative anaerobic bacteria, and the medium incubated aerobically and anaerobically at 37°C for 5-7 days.

Third: Brucella blood agar or blood agar(BBAKV) supplemented with hemin and vitamin K1(menadione) and kanamycin and vancomycin for isolation of strict anaerobic bacteria, and the medium incubated aerobically and anaerobically at 37°C for 7 days. The plate incubated anaerobically in anaerobic jar were contained Gas bag to provide CO₂ necessary to growth of anaerobic bacteria.

The number of viable colonies were counted by using total viable plate count method[^13].

C.F.U/mL original specimen = No. of colonies × Dilution factor / Inoculum size CFU/ml

When the period of incubation was completed. Colonies with differing characteristics were subjected to various test, and it were identified according to these references[^14-15].

Diagnosis of some important bacteria genetically by multiplex PCR

The extracted DNA(Favoergen kit) from bacteria was amplified using specific primers that were listed in(table 3.5) and then subjected to multiplex PCR in two stages (PCR I and PCR II). The PCR conditions were listed in the(table 1)[^16].

Table (1) : Multiplex PCR condition of oral bacteria genes

<table>
<thead>
<tr>
<th>stages</th>
<th>Steps</th>
<th>Temperature C°</th>
<th>Time</th>
<th>Cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCR I</td>
<td>Initial Denaturation</td>
<td>95</td>
<td>5 mints</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>DNA denaturation</td>
<td>95</td>
<td>30 sec</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>Primer annealing</td>
<td>60</td>
<td>30 sec</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Extension</td>
<td>72</td>
<td>1 mints</td>
<td></td>
</tr>
<tr>
<td>PCR II</td>
<td>Initial Denaturation</td>
<td>95</td>
<td>5 mints</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>DNA denaturation</td>
<td>95</td>
<td>30 sec</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>Primer annealing</td>
<td>55</td>
<td>30 sec</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Extension</td>
<td>72</td>
<td>1 mints</td>
<td></td>
</tr>
</tbody>
</table>

2- Blood specimens

Extraction of DNA from red blood cells (RBCs) for molecular study

Human genomic DNA from WBCₖ for healthy control subjects and periodontitis subjects was extracted done using DNA extraction Kit (FAVORGEN).
Amplification of TNF-α -308 gene

TNF-α -308 gene was amplified using specific primer:
forward 5'-GAGGCAATAGGTTTTGAGGGCCAT-3'
reverse 5'-GGGACACACAAGCATCAAGC-3'

The conditions of the PCR and annealing temperature was determined as reported in 17. Conditions of PCR were listed in the table (2). Amplified DNA fragments were put in 1% agarose, concentration of TBE buffer was 0.5x, electrophoresis time was 45 mints at 75v and the bands of TNF-α was visualized under UV light illuminator (France) when ethidium bromide had been added, A 100 base-pair ladder was used as a DNA marker (Eurex) for estimation of fragment sizes.

Table(2) PCR condition of Tumor Necrosis Factor-α -308

<table>
<thead>
<tr>
<th>Cycles</th>
<th>Time (mints))</th>
<th>Temp.(C)</th>
<th>Steps</th>
<th>Stage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>94</td>
<td>Initial Denaturation</td>
<td>1</td>
</tr>
<tr>
<td>35</td>
<td>30 sec</td>
<td>94</td>
<td>DNA denaturation</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>63</td>
<td>72</td>
<td>Primer Annealing</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>Hold</td>
<td>Extension</td>
<td>3</td>
</tr>
</tbody>
</table>

Restriction Fragment Length Polymorphism (RFLP)

TNF-α has a single nucleotide polymorphism at nucleotide position -308 in the promoter reign that results by altering the nucleotide at position -308 from guanine to adenine. A recognition site for the restriction enzyme NcoI (Promega) was detected by using specific primer. However, in this study the NcoI had been used as a restriction enzyme for this SNP, the enzyme recognized the sequence:

Recognition sequence : C▼CATG G GTAC▲C

Source : An E. coli strain that carries the NcoI gene from Nocardiacorallina (ATCC 19070).

Then the PCR product with enzyme was electrophoresis on 9% PAGE for three hours.

To compare frequency of genotypes and alleles in normal and patient groups, χ2 (SPSS-19) was used, and p<0.05 was considered as statistically significant. Logistic regression test was used to estimate the odds ratio (OR) and confidence interval 95% (CI).

Results and discussion

The results of the present study included microbiological study and molecular study. In molecular study was presented the total viable count of bacteria associated with periodontitis, and it was determined by selecting plates that have 30 to 300 colonies, and the number of bacteria was calculated by using the following formula:

Total viable count =No. of colonies × Dilution factor / Inoculum size CFU/ml

Table (3) showed total viable count of bacteria that collect from patients with chronic periodontitis and healthy control. There was significant association between study groups in the aerobic bacteria, the number of bacteria in healthy groups was $3.1 \times 10^5 \pm 55.11$ CFU/ml, and in patient was $2.8 \times 10^5 \pm 87.93$ CFU/ml $P=0.001$
and the anaerobic bacteria in healthy and patient was $2 \times 10^2 \pm 32.78$ CFU/ml and $1.6 \times 10^4 \pm 43.45$ CFU/ml respectively ($P \leq 0.05$).

Table (3) Viable cells count of bacteria associated with chronic periodontitis

<table>
<thead>
<tr>
<th>Culture type</th>
<th>Mean ±SD CFU/ml</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Healthy N=30</td>
<td>Patients N=100</td>
</tr>
<tr>
<td>Aerobic</td>
<td>$3.1 \times 10^3 \pm 55.11$</td>
<td>$2.8 \times 10^3 \pm 187.93$</td>
</tr>
<tr>
<td>Anaerobic</td>
<td>$2 \times 10^2 \pm 32.78$</td>
<td>$1.6 \times 10^4 \pm 43.45$</td>
</tr>
<tr>
<td>Total</td>
<td>$3.3 \times 10^2 \pm 37.1$</td>
<td>$29.6 \times 10^4 \pm 63.61$</td>
</tr>
</tbody>
</table>

Bacteria were isolated in this study and their results were mentioned in table (4) . The most bacteria isolated in this study were *P. gingivalis* 65 in patients and 5 in healthy control, *P. intermedia* 41 in patients and 3 in healthy control, *T. forsythensis* 33 in patients and 1 in healthy control, *Peptostreptococcus spp.* 100 in patients and 30 in healthy control, *A. actinomyctemcomitans* 47 in patients and 9 in healthy control *Streptococcus spp.* 44 in patients and 22 in healthy control and *S. aureus* 52 in patients and 3 in control.

Table (4) Number of bacteria in chronic periodontitis patients and healthy control isolated from oral

<table>
<thead>
<tr>
<th>Microorganisms</th>
<th>Subjects N =130</th>
<th>Healthy N=30</th>
<th>Patients N=100</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Anaerobic</td>
<td>Culture Culture</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P. gingivalis</td>
<td>5</td>
<td>65</td>
<td></td>
</tr>
<tr>
<td>P. intermedia</td>
<td>3</td>
<td>41</td>
<td></td>
</tr>
<tr>
<td>T. forsythensis</td>
<td>1</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>Peptostreptococcus</td>
<td>30</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>2. Aerobic and facultative anaerobic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. actinomyctemcomitans</td>
<td>9</td>
<td>47</td>
<td></td>
</tr>
<tr>
<td>Streptococcus spp.</td>
<td>22</td>
<td>44</td>
<td></td>
</tr>
<tr>
<td>S. aureus</td>
<td>3</td>
<td>52</td>
<td></td>
</tr>
<tr>
<td>A. Other</td>
<td>yes</td>
<td>yes</td>
<td></td>
</tr>
</tbody>
</table>

Identification of some oral bacteria by multiplex PCR

Bacteria which identified by multiplex PCR included *P. gingivalis, P. intermedia, T. forsythensis, and A. actinomyctemcomitans*, the bands of pervious bacteria were 197bp, 575bp, 641bp and 593 respectively, figure (1).

Figure (1) Electrophoresis pattern of multiplex PCR product of some bacterial genes which identified each species of bacteria, 1,2,3 P. gingivalis (197bp), 4,5,6 T. forsythensis, 7,8,9,10,11 P. intermedia (575bp), 12,13,14 A. actinomycetemcomitans (593bp).

In the current study, the high number of bacteria in patients may be belonged to the suitable environment that produced in periodontal pocket, that mean the destruction of alveolar bone and periodontal ligament, lead to bleeding of gingiva tissue and formation of pocket and these condition makes suitable place for bacterial growth specially anaerobic bacteria. The leading cause of periodontitis is the deepening of gingival pockets due to inflammation brought on by the presence of undisturbed plaque. While the number of bacteria in healthy people was low and this is predictable result because there is no suitable environment. Darveau et al., 1997 showed that the number of bacteria in pocket in healthy people was 10^2-10^3 CFU, and most of organisms were gram positive, such as Actinomyces spp. and Streptococci spp. While other species such as Porphyromonas spp. and Prevotella spp. were in low levels and these results were coincided with Ximenez-Fyvie et al., 2000 that found Porphyromonas spp. and Prevotella spp. represented small portion in their study.

Many study were indicated that the presence of the tree red complex periodontopathogens, include P. gingivalis, T. forsythia, and Treponema denticola in addition to A. actinomycetemcomitans, considered the most etiologic factors in periodontitis21. Slots and Rams, 1992 reported that the most organisms detected from dental plaque are Gram positive, facultatively anaerobic bacteria, particularly Actinomyces spp. and Streptococci22. Peptostreptococcus is a Gram-positive anaerobic coccus that is widespread distributed in the normal human flora so that it was isolated from all healthy control 30 subjects and all periodontitis patients. Its role in oral disease is less well detected, although it has been included in periodontal disease, gingivitis and root canal infections23.

Staphylococci are not usually seen in the cavity of mouth, and when this occurs, they are considered to belong to the transitory microorganisms. Individuals with periodontitis classified as possible reservoirs of the opportunistic bacteria in the cavity of oral. Antibiotics uses for treatment of periodontitis or other infections by microorganism may increase the number microbes ex. Staphylococcus spp. in the cavity of oral of periodontitis subjects24.

Molecular study of chronic periodontitis

Tumor necrosis factor-308 (TNFα -308) genotyping PCR

PCR product of TNFα -308 gene was amplified by using specific primers. The PCR product (band) was 147bp figure(2).
Detection of genotype of TNFα-308 gene polymorphism associated with chronic periodontitis by using PCR-RFLP

Genotypes of TNFα-308 gene polymorphism with allele frequency between healthy control and chronic periodontitis subjects were detected by using PCR-RFLP technique. Results from figure (4.8) appeared that the genotypes of TNFα-308 were represented AA homozygote (147bp), AB heterozygote (147bp, 126bp and 21bp) and BB homozygote (126bp and 21bp).

Genotype frequencies of AA, AB, and BB of TNF-308 gene polymorphism were 12(40%), 10(33.33%) and 8(26.67%) in the healthy subjects, whereas 12(12%), 25(25%) and 63(63%) in the chronic periodontitis patients respectively. The differences between all genotypes in healthy and patients with chronic periodontitis were significant. The P-value of the genotype frequency of TNFα -308 gene was (0.001) which is less than 0.05.

Allele frequency of TNFα -308 gene polymorphism associated with chronic periodontitis

Data of allele frequencies of point mutations on TNFα -308 gene in healthy control and chronic periodontitis patients were presented in table (5). For healthy groups the allele frequency of (A) variant allele was 0.57(57%), and (B) allele variant frequency was 0.43(43%) according to Hardy-Weinberg equation. Whereas for patient groups the allele frequency of (A) variant allele was 0.25(25%), and (B) allele variant
frequency was 0.75(75%) according to Hardy-Weinberg equation, PCR-RFLP results of TNF-α -308 gene polymorphism showed that the patients with genotype BB were more affected by chronic periodontitis at 4.68 times than patients with AA and AB 0.2 and 0.67 respectively. P value was significant for all genotypes 0.001.

Table(5) Genotype of TNF-308 gene polymorphism with Allele frequency in healthy control and chronic periodontitis patients

<table>
<thead>
<tr>
<th>OR CI 95%</th>
<th>P value</th>
<th>Patients</th>
<th>Healthy</th>
<th>Genotype TNF-308</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.20</td>
<td>0.001</td>
<td>12(12%)</td>
<td>12(40%)</td>
<td>AA</td>
</tr>
<tr>
<td>0.67</td>
<td>0.001</td>
<td>25(25%)</td>
<td>10(33.33%)</td>
<td>AB</td>
</tr>
<tr>
<td>4.68</td>
<td>0.001</td>
<td>63(63%)</td>
<td>8(26.67%)</td>
<td>BB</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100</td>
<td>30</td>
<td>Total number</td>
</tr>
</tbody>
</table>

Allele frequency

<table>
<thead>
<tr>
<th>Patients</th>
<th>Control</th>
<th>Allele</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.25(25%)</td>
<td>0.57(57%)</td>
<td>A</td>
</tr>
<tr>
<td>0.75(75%)</td>
<td>043(43%)</td>
<td>B</td>
</tr>
</tbody>
</table>

In the this study, the detection of a polymorphism of TNF-α gene at loci -308 a DNA samples of the Iraqi population suffering or not from periodontal disease were done using PCR-RFLP technique. The results were appeared that there was an association between the polymorphism of TNF-α polymorphism gene and chronic periodontitis. odds ratio for TNF-α -308 showed that the patients with genotype BB were more affected by chronic periodontitis at 4.68 times than patients with AA and AB 0.2 and 0.67 respectively. These results was disagreed with the results that showed by studies that were done by many researchers, they found that no correlation of TNF-α -308 gene polymorphisms with periodontal conditions in a Greek population and the odds ratio of the genotypes was 0.878 compare with odds ratio of the current study it was 4.68 , this variation in results could be belong to geographical area of the both study.

The current study was documented a strong risk for chronic periodontitis of TNF-α -308 for mutant BB genotype carriers according to odds ratio 4.68 ,this is the first study which indicated that there was a strong association between TNF-α -308 gene polymorphism and chronic periodontitis in Iraqi population. These results may be return to the frequent wars in this country and the impact of weapons used that could contain some chemical material, which led to a weakness in the genetic structure of the Iraqi people and increase its sensitivity to bacterial infections, which in turn led to polymorphism of TNF-α at loci -308. In a three-week period of conflict in Iraq during 2003, it was estimated that over 1000 tons of depleted uranium munitions were used, these may be used for water treatment in the future.

Conclusion

Periodontitis is a chronic disease that associated with multiple bacterial infection and the present of disease is associated with polymorphism of TNF-α -308 gene in Iraqi population.

Acknowledgments

The authors thanks University of Babylon, College of Sciences and Department of Biology for providing the necessary facilities during this work,our great appreciation to the staff working in college of dentistry in Babylon university, our gratitude to all the patients for their cooperation in achieving this study.

References
