Molecular typing of dandruff pathogens and evaluated the antifungal activity of plant extracts

Zaidan Khlaif Imran* Shaimaa M. Ali Wtwt and Oruba K. Hussein
All women Science college, Babylon University, Hilla, Iraq

Abstract: Background: Dandruff is a common dermatological problem, dispersed flaking of the scalp and hair. Various intrinsic and environmental factors such as skin surface fungal colonization, individual susceptibility, are affecting. The etiology of dandruff is not well understood. The study aims to verify the unequivocal understanding of the fungal relationship with dandruff by identification of filamentous fungi, Candida and survey of the bacterial companioning dandruff of hair samples and investigate the antifungal activity of water extracts of some medicinal plants in isolated fungi. A total of 280 hairs samples, and hair swabs were collected from patients attenuated in Hilla hospitals and private clinics in the Babylon province (n= 152 hair samples, n= 74 dandruff samples, n= 54 scalp swabs). Clinical samples were cultured on Sabouraud dextrose agar (SDA) medium with/without antibiotics based on stander cultured methods. Candida spp. was preliminary identified based on CHROMagar medium. Molecular typing of isolated yeasts via amplification ITS region and sequence analysis and multiple alignment was performed and constricted the phylogeny tree.

Keyword: Dandruff, Molecular typing, fungi, Plant extract activity.

Introduction

Scalp skin has unique predisposing factors like hair follicles density, moist, dark and warm environment, these factors make it susceptible to superficial mycotic infections such as dandruff, dermatitis, and tinea capitis. Dandruff is extremely common, affecting close to 50% of the world’s population. It's characterize white or gray flakes, occurred in patches or scattered on the scalp, usually accompanied by itching. The healthcare orientation, high costs. In USA the cost exceeded $1.4 billion in the United States in 2004 and causes patient's psychological suffering. Many factors were suspected with occurring of dandruff, some of them are intrinsic and environmental factors, such as skin surface fungal colonization, individual susceptibility, genetic, patient immunity and interactions between these factors, led to the dandruff occurrence. The yeasts Malassezia and Candida may aggravate atop dermatitis due to an allergic reaction and led to damaging the surface of the hair, scalp may share in the development of dandruff.

The etiology of dandruff appears to be dependent upon many factors: scalp gland secretions, head lice, microfloral metabolism, individual susceptibility and their interactions, but the exact underlying cause of dandruff is unknown. Fungi were one of the most suspected causative agents of scalp health problematic worldwide.

Unfortunately, most of previous studies consider the dandruff were given more attention to the Malassezia spp is the unique causes. A secreted lipase of Malassezia is an associated virulence factor of.
development of dandruff, and quite neglected others fungi13-16. Faergemann17 pointed to there is little information about the distribution and colonization of Candida spp. of skin in patients with atopic dermatitis. The Deutromycete, Ascomycetes and Basidiomycete yeast are colonizing the human scalp and hairs and get their role in the development of dermatitis as primary or secondary pathogens18.

The study aims to verify the unequivocal understanding of the fungi associated with dandruff by identification of filamentous fungi, yeasts and bacteria companioning dandruff of hair samples, and investigate the antifungal activity of aqueous extracts of some medicinal plants in isolated fungi.

2. Material and Methods

Two hundred and eighty dandruff samples (152 hair samples and 54 swabs and 74 scraps) were collected from patients at different ages and gender, those were previously diagnosed by a physician for the presence of hair dandruff symptoms.

Clinical specimens (piece of hairs, flakes and swabs were cultured into two sets: first one was cultured on Sabouraud's dextrose agar medium (SDA) without cyclohexamide and incubated for 24-48h 30°C. Second set with cyclohexamide and incubated at 28-30°C for 1-3 weeks. After incubation periods, single yeast and fungal colonies were isolated in pure cultures. Phenotypic identification was performed based on standard methods19,20. The subcultures in each isolate were preserved in slant SDA media for future tests21. While the bacterial isolation, purification and identification on the blood agar base and manitol salt agar based on McFadden22.

2.1. CHROMagar test

This test was used for preliminary identification most of Deutromycetes, Ascomycetes and Basidiomycetes yeast. Each single colony yeast with white -cream color were picked up and streaking on CHROMagar medium23. All the plates were cultured and incubated at 30°C for 24-48h. While the red colonies were directly identified as Rhodotorulla.

2.2. Lipase and Phospholipase production assay

Candida species were screened for the production of extracellular lipase and phospholipase activity by growing them on a substrate with SDA: tween 80 medium and egg yolk respectively and incubated at 37°C for 48 h. After which the colony diameter plus precipitation zone was measured for each isolate. Calculation of the zone of phospholipase activity was performed according to Price et al.24.

2.3. Plants crude extraction and preparation

Plant material included of Lawsonia inermis (leaves of Henna), Eugenia caryophyllus (floral buds of Clove), Cinnamomum verum (bark), Camellia sinensis (leaves) and Eucalyptus globules (leaves) were collected from markets. They were identified by the taxonomist in the biology department, All women college for Science in Babylon University. The extracts were prepared based on Vijayakumar et al.25. The serial concentration (1%, 4%, 8%) were evaluated their antifungal activities against dermatophytes and yeasts.

2.4. Evaluate the antifungal activities

Brief description of the method, pour about 20 ml SDA to Petri dish, 0.2 ml of cell suspension (1x106) was spread on the surface of SDA and left it to been absorption in the medium. Wells (0.5 cm diameter) in SDA were performed by cork pore and filled each well of SDA with 100 µl of plant extract, incubate 28-30°C for 24-48 h, the inhibition zone was measured by metric ruler. All tests were performed in triplicate26.

2.5. PCR and sequencing analysis:

The phenotypic identification of fungi under interest was confirmed by simple PCR by universal primer pair ITS5/ITS4. One µl of DNA (20 µg/ml) from each of 24 isolates were mixed with a PCR mixture (final reaction volume 25 µl) consisted of 12 µl of 20x Master Mix (Promega), 2 µl of primers (10 pmole) and rest molecular-gradewater. The PCR conditions and gel electrophoresis were performed based on Imran and Al-Asadi27.
Representative 22PCR products of fungi were subjected to sequencing analysis in the Macro gene Lab. USA. Pairwise alignment sequences were compared with the BLAST database. The phylogenetic tree (UPG) based on sequencing were constructed employing the Mega 6 software, multiple alignment sequences based on BioEdit software was performed.

2.4. Statistical analysis

All statistical analysis was undertaken using factorial experimental randomized block design. A P.value < 0.05 was considered significant.

3. Results:

3.1. Fungal survey:

A total of 2313 colonies (1591 yeast colonies, 722 filamentous fungi colonies) was isolated from clinical specimens (hair, flakes, scalp swabs). The percentage of filamentous fungi were summarized in table (1), the results showed that the *Aspergillus flavus* and *Asp. fumegatus* were the highest molds while the *T. rubrum* and *M. canis* were the highest dermatophytes fungi. The survey of bacteria with dandruff cases showed a frequency percentage of *S. aureus* and *S. epidermidis* 35.1% for each.

Table (1): Summarized the appearance and frequency percentage of filamentous fungi isolated from clinical samples.

<table>
<thead>
<tr>
<th>Fungi</th>
<th>No. of samples</th>
<th>No. of colonies</th>
<th>Percentage of appearance</th>
<th>Percentage of frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alternaria spp</td>
<td>28</td>
<td>42</td>
<td>10 %</td>
<td>5.81 %</td>
</tr>
<tr>
<td>Aspergillus flavus</td>
<td>82</td>
<td>193</td>
<td>29.28 %</td>
<td>26.73 %</td>
</tr>
<tr>
<td>Asp. Fumigates</td>
<td>33</td>
<td>169</td>
<td>11.78 %</td>
<td>23.40 %</td>
</tr>
<tr>
<td>Asp. Niger</td>
<td>45</td>
<td>106</td>
<td>16.07 %</td>
<td>14.68 %</td>
</tr>
<tr>
<td>Asp. Terreus</td>
<td>1</td>
<td>1</td>
<td>0.35 %</td>
<td>0.13 %</td>
</tr>
<tr>
<td>Asp. Parasiticus</td>
<td>5</td>
<td>17</td>
<td>1.78 %</td>
<td>2.35 %</td>
</tr>
<tr>
<td>Macrosporum</td>
<td>6</td>
<td>21</td>
<td>2.14 %</td>
<td>2.90 %</td>
</tr>
<tr>
<td>Penicillium spp</td>
<td>18</td>
<td>42</td>
<td>6.42 %</td>
<td>5.81 %</td>
</tr>
<tr>
<td>Rhizopusstolonifer</td>
<td>1</td>
<td>1</td>
<td>0.35 %</td>
<td>0.13 %</td>
</tr>
<tr>
<td>T. interdigitale</td>
<td>1</td>
<td>3</td>
<td>0.35 %</td>
<td>0.41 %</td>
</tr>
<tr>
<td>T. rubrum</td>
<td>5</td>
<td>125</td>
<td>1.78 %</td>
<td>17.31 %</td>
</tr>
<tr>
<td>T. verrucosum</td>
<td>1</td>
<td>2</td>
<td>0.35 %</td>
<td>0.27 %</td>
</tr>
<tr>
<td>Total</td>
<td>226</td>
<td>722</td>
<td>80.65 %</td>
<td>99.93 %</td>
</tr>
</tbody>
</table>

Data on the growth of *Candida* spp and *Rhodotorulla* on hairs planted on SDA comparison with direct scalp's swab streaking and scattered flakes on SDA medium are presented in figure (1). Both yeast grew well in whole hairs. *Candida* spp and *Rhodotorulla* demonstrated more rapid and abundant growth of hairs than SDA medium after 24-48h, most frequent and vital colonies on hairs, may supported growth both *Candida* and *Rhodotorulla* compare with their growth on SDA (Figure 1).
Figure (1): Abundant of yeasts grown on clinical samples: A = scatter of flakes, B = Swab streak from dandruff cases, C = Hairs infected by dandruff. (Rh = Rhodotorulla, C = Candida, M = Mould, H = Hairs).

The percentage of appearance Candida spp. were summarized in Table (2), the results showed C. parapsilosis was the highest yeast (28.75% (80/280)), while the frequency of percentage of it was 25.14% (400/280). The appearance of R. mucitagonosa was 7.14% (20/280) and the frequency percentage was 8.79% (140/280).

Table (2): Summarized the Percentage of appearance and frequency values of yeasts and their colors on CHROMagar.

<table>
<thead>
<tr>
<th>Candida spp</th>
<th>CHROMagar</th>
<th>Samples No.</th>
<th>Colonies No.</th>
<th>Percentage</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. albicans</td>
<td>Light green</td>
<td>17</td>
<td>125</td>
<td>6.07 %</td>
<td>7.9 %</td>
</tr>
<tr>
<td>C. glabrata</td>
<td>Pale pink</td>
<td>20</td>
<td>250</td>
<td>7.14 %</td>
<td>15.71 %</td>
</tr>
<tr>
<td>C. intermedia</td>
<td>Dark purple</td>
<td>36</td>
<td>300</td>
<td>12.85 %</td>
<td>18.85 %</td>
</tr>
<tr>
<td>C. kruzei</td>
<td>Pink</td>
<td>50</td>
<td>350</td>
<td>17.85 %</td>
<td>21.99 %</td>
</tr>
<tr>
<td>C. parapsilosis</td>
<td>Cream – pale</td>
<td>80</td>
<td>400</td>
<td>28.57 %</td>
<td>25.14 %</td>
</tr>
<tr>
<td>C. tropicalis</td>
<td>Metallic blue</td>
<td>10</td>
<td>26</td>
<td>3.57 %</td>
<td>1.63 %</td>
</tr>
<tr>
<td>R. mucitagonosa</td>
<td>Still Red</td>
<td>20</td>
<td>140</td>
<td>7.14 %</td>
<td>8.79 %</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>233</td>
<td>1591</td>
<td>83.19 %</td>
<td>99.96 %</td>
</tr>
</tbody>
</table>

3.2. Lipase and phospholipase production tests

Our results showed that C. albicans, C. tropicalis and C. parapsilosis gave positive results for their ability to produce lipase and Phospholipase invitro. The singer of lipase and Phospholipase production is a precipitation around the colony after an incubation period of 72 h at 30°C (Figure 2), other yeasts showed positive tests (data not shown on).
3.3. Crude of plant extract activity:

The activity of plant extract crude showed significant inhibition in the colony diameter of fungi. Figure (3) showed the variation of inhibition zones based on plant species: the aqueous extract of cloves was more effective (0.62 mm), followed by Cinnomum, Eucalyptus, green tea, henna (0.25, 0.28, 0.29, 0.23) respectively.

The sensitivity of fungi to the effects of plant extracts were showed significant difference: T. rubrum more sensitive followed by M. canis, C. albicans, C. glabrata, C. parapsilosis, C. intermedia and R. mucitlaginosa respectively (Figure 2). also the concentration 8% showed more effective than 2% and 4% respectively (data not shown).
Figure (2) : Fungal sensitivity to the crude of plant extract determined based on the inhibition zone of dermatophytes and yeast growth.

Antifungal activity of five extracts were comparable with three reference antifungals (Econazole (ECN), Miconazole (MCL) and 5-fluorocytosine AFY), the extract of clove gave antifungal activity higher than that of references (ECN, MCL and AFY), while the other four plant extract gave lower antifungal activities than that reference antifungals (Figure 3).

Figure (3) : Antifungal activities of five plants extracts: Cl= Cloves , E=Euclaptus, C= Cinnamomum, Ca= Camellia. H= hana, ECN, MCL, AFY= reference antifungals, A= culture T.rubrum, B= culture of C.intermedia and C= culture of R.mucitagnosa
3.4. PCR and sequencing assay

The results of amplification ITS1-5.8S–ITS2 and flanking of primer pairs ITS5/ITS4 showed variation in the amplicons sizes of 24 isolates dermatophytes and yeasts for each (Figure 4, A&B). T. mentogrophytes isolates (680, 650 bp). T. rubrum isolates (780, 800 bp).

Figure (4): Agarose gel electrophoresis of PCR products: A. For dermatophyte species isolate amplified by pair primer ITS5/ITS4: Lane M = Molecular marker 100 bp.; lane one T. mentogrophytes isolates (680 bp.). Lanes 2-4, 6-8, 14, 17-21 T. rubrum isolates (800 bp)., Lanes 5 T. mentogrophytes isolates (650 bp.). Lanes 7, 15, 16, 22-24 T. rubrum isolates (780 bp.). B. For Candida species isolate. Lane M = Molecular marker 100 bp.; Lanes 1-2, 4-8, 11-18, 21-24: 680 bp. (C. tropicalis); Lanes 3, 9, 13, 15-17, 20: 630 bp. (C. parapsilosis); Lanes 14: 720 bp. (C. kruzea); Lanes 10, 12: 550 bp. (C. albicans)

3.5. Multiple alignment of 17 sequences of ITS region

Figure (5): The Multiple alignment of Sequence analysis of ITS region amplified by ITS5/ITS4 for suspected fungal dandruff pathogens.
The results of the multiple alignment analysis based on BioEdit software performed for 22 isolates of yeast: *C. albicans* and *Cryptococcus* spp, *C. parapsilosis* *Aureobasidium iranianum*, *Issatchenka orientalis*, *R. mucitginosa* and dermatophyte (Figure 5). Each set of isolates of *Candida* spp was shown high similarity to leading sequences with some mutation or substitutions, these sequence variations were indicated to microevolution in each set of isolates.

3.6. Phylogeny tree:

The Phylogenetic tree (UPGM) for 21 fungal species was constructed based on sequences of ITS region. The fungal species were isolated from dandruff samples showed closed related intra-isolates groups as in Figure (6), many clusters of closely related fungal species The dermatophytes occurred in neighbored clusters, the same relationship between *C. albicans*, *C. sake* and *C. parapsilosis* were close to either. The Basidiomycetes yeasts separated their clusters of previous clusters depended on their sequences.

![Phylogeny tree](image)

Figure (6): Phylogeny tree (UPGM) based on sequence of 21 fungal species suspected as dandruff pathogens occurred in five clusters (C1=dermatophyte, C2 and C4 =Basidiomycetes yeast, C2=Deutromycets yeast, C5= Ascomycetes yeast).

4. Discussions:

Mycotic pathogens were one of the suspected on the scalp of dandruff patients, most of previous works considered *Malassezia* spp the most common pathogen, others works reported to role of combined factors, but in the general mechanism of occurrence of the disease is not clearly understood.9,10,15,16

This study identified 12 fungal species associated with all clinical samples: (4 dermatophytes, 3 *Candida*, one *Aureobasidium iranianum*, *Issatchenka orientalis* and *R. mucitginosa* for each, 2 *Cryptococcus*) based on molecular assays (Figures 4–6). Most of these dermatophytic fungi cause dermatitis, our results agree with the results of studies of Tan,29; Jain et al., (30); Abastabar et al.31.

Our study was aimed to evaluate antifungal activities of five plant extracts invitro against suspected dandruff pathogens, Clove extract showed significantly antifungal activity more than others extracts, either than reference antifungals drugs such as ECN, MCL and AFY (figure 3), the microbial inhibition activity of Clove depende on it's composition of flavonoids and carotenoids, this finding agreed with,32 our results recommended
to evaluate the clinical efficacy and safety of Clove extract as anti-Dandruff Shampoo based on their size of inhibition zone compare with reference drugs.

This study was verified that most of yeast: C. albicans, C. parapsilosis, C. tropicalis and R. mucitagnos had the ability to produced lipase and Phospholipase, this result was agree with recent studies were reported that lipase causing dermal inflammation and tissue damage and play a key role in the lifestyle of opportunistic yeast5,33-37. The high frequent of dermatophyte fungi and yeasts such as Microsporum, Trichophyton and Candida in this study may take their role in the attacked of scalp hair follicle and led to development dandruff, this explanation agreed with Herbert38 and Zinkeviciene\textit{et al.}39 also Staph.aureus and Staph.epidermidis, were considered an opportunistic pathogen has the ability to colonize in different niches40.

Our finding results, in particular based on the abundant growth of Candida and Rhodotorulla on hairs, scalp and flakes and the ability of these yeasts for lipase and Phospholipase production(Figure 1, 2). This result tends to confirm the virulence of Candida spp and Rhodotorulla are considered to be the most virulent compared with Malassezia spp. has been questioned by13-17, who studied only Malassezia have virulence factor depended on lipase production.

Our finding highly frequent and abundant growth of Candida spp., R. mucitagnos and Cryptococcus with absent of Malassezia spp. in all clinical samples under interest (Figure 1). This finding was supported by the results of Golubev37 and Zinkeviciene\textit{et al.}39, the found negative relationship between Candida spp and Malassezia spp. when they grew in the same niche, Both Malassezia and Candida were not found together in any of the samples due to different growth rate, Candida had an antagonist role against Malassezia spp. and Candida spp. have the ability to produce kill factors (mycocin as lethal substance) led to inhibition and killed Malassezia spp. The high growth rate of Candida more than Malassezia spp this property led to overgrowth of Candida against Malassezia spp. which has no special requirement for growth media37,39,40. These justifications were explained the predominance of Candida spp., R. mucitagnos and Cryptococcus spp. we determined in this study.

Our conclusion, based on this results and review, We think it was impossible to note that were considered both Candida and Rhodotorulla as harmless yeast with dandruff patients from all previous works. And we consider the dermatophytes, Candida and Rhodotorulla were important dandruff mycotic pathogens, and the current data refute their contention about the consideration the Malassezia spp as the main dandruff pathogen. More studies are required to conform our results about the pathogenic role of fungi act as exacerbating factors in dandruff.

Ethical approval

Author hereby declared that all the actions have been examined in the studies were approved by the appropriate ethics committee and have therefore been performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki.

References:

