

International Journal of ChemTech Research CODEN (USA): IJCRGG ISSN: 0974-4290 Vol.9, No.03 pp 431-443, 2016

Enhance photocatalytic Activity of TiO₂ by Carbon Nanotubes

Firas H. Abdulrazzak

Chemistry Department, College of Education for Pure Sciences, Diyala University, Diyala, Iraq

Abstract: Two types of composites consisting of single –walled carbon nanotubes (SWNTs) and mwuti-walled carbon nanotubes (MWNTs) with titanium dioxide (TiO₂-P25) were synthesized by simple evaporation methods. These composites were characterized by UV–vis diffuse reflectance, XRD, Raman spectroscopy, Fluorescence spectroscopy and Surface area (S_{BET}). The results show that Carbon Nanotubes (CNT) which used to synthesis composites (TiO₂/CNTs) has succeeded in increased the activity of TiO₂when exhibits higher photocatalytic activity than TiO₂. The multi walled carbon nanotubes MWNTs were succeeded to increase the adsorption for synthesis composites more than SWNTs, while SWNTs succeed to improve the activity of photocatalytic degradation of TiO₂. The enhancements of the activity for the composites by the two types of CNTs can explain by two parameters: the first were increased the surfaces area for synthesis composites and the second was translating the exited electron e⁻ from conduction bands (CB) of TiO₂ to the surfaces of CNTs which causing reduces the recombination of e^{-/}h⁺.

Keywords: SWNT, MWNT, P25, TiO₂/CNTs composite, Cobalamin degradation, out situ activity.

Firas H. Abdulrazzak /International Journal of ChemTech Research, 2016,9(3),pp 431-443.
