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Abstract: In the present study, estimation of optimum input parameters corresponds to desired
values of output parameters is carried out for a sponge iron production process. For this purpose
two different data sets, Data-1 and Data-2, are collected from a typical sponge iron plant, which
correlate the input and output parameters. Data-1 includes temperatures profiles and air inlet at
positions, AT-1 to AT-3 and MF-1 and MF-2, inside the kiln whereas, flow rates of iron ore,
feed coal, slinger coal and sponge iron is accounted as Data-2. Total sixteen topologies are
proposed for each data set to optimize the regression coefficients (R), which are solved through
ANN. These topologies are used to identify optimum value of output parameters based on value
of R. The values of output parameters meet the process requirements. The % errors observed in
industrial values and that predicted through ANN software fall within ±5% for Data-1 and
Data-2. Further, a better option is found to compute optimum input parameters correspond to
desired output. The analysis predicts optimum input parameters within 4% deviation than that
are used in the process.
Keywords: Sponge iron process, Rotary kiln, ANN topologies, Optimum input parameters.

1. Introduction

Sponge iron is the metallic form of iron produced from reduction of iron oxide below the fusion
temperature of iron ore (1535oC) by utilizing hydrocarbon gases or carbonaceous fuels as coal. The reduced
iron having high degree of metallization exhibits a ‘honeycomb structure’, due to which it is named as sponge
iron.

It is seen that the growth of sponge iron industry in last few years is remarkable and today India is the
largest producer of sponge iron as it covers 16% of global output1. Sponge iron is produced primarily both by
using non-coking coal and natural gas as reductant and therefore classified as coal based and gas based process
respectively. Due to promising availability of coal in India the coal based sponge iron plants share the major
amount of its production2.

With the availability of raw materials, high demand of sponge iron and less payback period, sponge
iron industry has emerged as a profitable venture. However, due to lack of proper integration techniques, non-
optimal process parameters, high energy consumption and old running process technology, the industries are
facing a setback in market. Amongst these draw backs the problem of improper integration technique and high
energy consumption are addressed by many investigators3,4,5,6,7,8,9,10,11,12. However, the optimization of process
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parameters based on the desired output of the industry remains untouched. These parameters include
temperature profile inside the main units of the process which is kiln and flow rate of sponge iron production.
These parameters depend on air, iron ore and coal flow rate, which may be regulated to suit the desired output
of the process. For this purpose one may use manual practice to see the outcome when one input parameter is
varied. It is clumsy and cumbersome approach, which requires considerable experimentation to set the optimum
parameters. Thus, an easy methodology to optimize the process parameters is considered in the present work
with artificial neural network (ANN).

With the advancement in computer technology neural network has made notable contribution in non-
linear problem estimation13,14. Neural networks, with their remarkable ability to derive meaning from
complicated or imprecise data, can be used to extract patterns and detect trends that are too complex to be
noticed by either humans or other computer techniques. This modeling capability, as well as the ability to learn
from experience, have made ANN superior over most traditional modeling methods. In this work, ANN based
topologies are developed and discussed to know actual temperature profile in rotary kiln as well as production
rate of sponge iron. It appears that no literature is available where ANN is used to optimize the operating
parameters of metallurgical plants such as sponge iron process.

2. Sponge iron process

The course of the direct reduction of iron ore in rotary kiln (RK) is schematically described in Fig. 1.
Iron ore and coal are fed to the kiln at controlled rates without pre-mixing and the charge moves through the
kiln depending upon the rotation and inclination of the kiln. In combination with the feed charge, other
successive processes such as drying, preheating and reduction are controlled by means of air which is injected
along the kiln length9. The material discharged from the kiln is cooled in an evacuated rotary cooler (RC) with
water sprayed on the shell side. The cooler discharge is then separated into sponge iron, char and ash through
magnetic separator. The waste gas generated in the rotary kiln is passed through dust settling chamber (DSC)
and the carbon monoxide produced through incomplete oxidation is converted to carbon dioxide by supplying
excess air in the after burning chamber (ABC) as shown in Fig. 1. As waste gas is at 900oC while exiting the
ABC,  it  is  passed  through  a  waste  heat  recovery  boiler  (WHRB)  to  produce  steam  for  power  generation.
Further, waste gas is passed through electro static precipitator (ESP) for dust removal and is then released to the
atmosphere through chimney. The flow of waste gas from rotary kiln to chimney is maintained using an
induced draft fan located before the chimney.

Fig. 1. Process flow diagram of sponge iron process
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The process flow diagram (PFD) of sponge iron production process, shown in Fig. 1, consists of a
number of equipment namely rotary kiln, rotary cooler, DSC, ABC, WHRB, ESP, wet scrapper and chimney.
As the aim of the present work is to correlate input and output parameters of the sponge iron process using
ANN, data of most important unit of process i.e. rotary kiln is collected. Further, it is observed that the
operating parameters of rotary kiln are adjusted in such a manner so that temperature profile and Fe conversion
can be maintained at desirable values. Therefore, all input and output parameters correspond to temperature
profile and Fe conversion are required to be collected.

3. Data collection

The schematic of rotary kiln is shown in Fig. 2 where temperatures, T-1 to T-12, are noted through 12
thermocouples, which are placed along the length. The values measured through these thermocouples give
temperature profile in the rotary kiln. Around the periphery of the kiln air is injected through positions AT-1,
AT-2, AT-3, MF-1 and MF-2. At AT-1 to AT-3 one blower is attached to each position whereas, at MF-1 and
MF-2 two blowers are placed to each inlet. Therefore, total seven blowers are placed which provide air along
the length of the kiln. To produce sponge iron, iron ore and coal are used as raw material. In the kiln coal is
injected from feed as well as discharge side, which is called feed coal and slinger coal, respectively, as shown in
Fig. 1. Slinger coal is fed as fines, medium and coarse coal pneumatically; however, feed coal is fed as coarse
coal. This is due to the process requirement. The sponge iron along with char, spent lime and ash are produced
as kiln outlet. It further enters to rotary cooler where it cools from 1048°C to 110°C. The production of sponge
iron depends on metallization of iron ore.

For the present work data of a typical sponge iron industry with production capacity of 350 tonne/day is
collected on per hour basis. There are 440 data points which are collected for 24 hours for 18 days and 8 hours
of 19th day. Due to limitation of the pages of journal complete data of day-1 is shown in Table A.1.
Temperatures, T-1 to T-12, are in °C, flow rates of iron ore, feed coal and injected coal are in tonne/h and flow
of air is in % damper opening such as 20, 19, 43, etc. Damper opening of 1% gives air flow rate around 600
m3/h as per information collected from industry. Before using these data for analysis, these are checked with
mass balance. For this purpose, mass balance is performed to all 440 data points. It is found that for these data
points  the maximum deviation in values is  5.4%. As all  data  points  satisfy mass balance with ±6%, these are
considered for further analysis. These data are divided in two sets: Data-1 and Data-2. Details of these data sets
are discussed in subsequent paragraphs:

3.1. Data-1

The data of temperature T-1 to T-12, AT-1 to AT-3 and MF-1 and MF-2 are referred as data set, Data-
1. As temperature is dependent on combustion that takes place inside the kiln, it is affected by air entered the
kiln along the length. Therefore, temperature profile and flow rate of air are considered as one data set and is
referred as Data-1. It consists of data of column 7 to 23 of Table A.1.
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Fig. 2 Schematic of rotary kiln
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3.2. Data-2

The production of sponge iron depends primarily on the amount of iron ore and coal as reduction of
iron ore is carried out with carbon available in coal. Therefore, iron ore, feed coal, slinger coal and sponge iron
is accounted as another set of data which is referred as Data-2. It consists of data of column 1 to 6 of Table A.1.
It should be noted in Table A.1 that slinger coal is presented in three sizes such as fines, medium and coarse.
Though industrial data of day-1 is shown in this work the operating ranges of input and output parameters for
Data-1 and Data-2, found for 440 data points, are summarized in Table 1.

Table 1 Operating ranges of input and output parameters for Data-1 and Data-2

Parameter Operating range Parameter Operating range
Iron ore 21-23.8 tph T-1 1002-1108 °C
Feed coal 8.2-8.8 tph T-2 986-1098 °C
Fines 1.7-1.9 tph T-3 976-1091 °C
Medium 2.65-4 tph T-4 992-1092 °C
Coarse 2.9-3.9 tph T-5 1015-1109 °C
Sponge iron 13.53-15.355 tph T-6 1019-1102 °C
AT-1 16-20 % T-7 1002-1097 °C
AT-2 19-21 % T-8 1000-1098 °C
AT-3 3-14 % T-9 862-991 °C
MF-1 43-53 % T-10 829-955 °C
MF-2 20-23 % T-11 764-911 °C

T-12 700-800°C

3. The ANN model

An ANN is a parallel-distributed information processing system15. ANN is made up of interconnecting
artificial neurons. These are distributed, adaptive, nonlinear learning machines built out of many different
processing elements (PEs). Each PE receives signal from other PEs and/or itself. The interconnectivity,
amongst PEs, is defined by topology. The ANN system is a collection of operators interconnected by means of
one-way signal flow channels. ANN stores the samples with a distributed coding, thus forming a trainable non-
linear system. The strengths of signals flowing on the connections are scaled by adjustable parameters called
weights. The PEs sum all these contributions and produce an output that is a nonlinear (static) function of the
sum. The PEs' outputs become either system outputs or are sent to the same or other PEs. The ANN network
also includes hidden layer(s) between the input and output layers. The main idea of the ANN approach
resembles with the human brain functioning. Therefore, ANN has a quicker response and higher performance
than a sequential digital computer. Given the inputs and desired outputs, it is also self-adaptive to the
environment so as to respond to the different inputs rationally. It has a complex internal structure, so that these
imitate basic biological functions of neurons. In this study, the feature of a neural network is used in the
estimating actual output parameters such as flow rate of sponge iron as well as temperature profile in rotary kiln
for Data-1 and Data-2.

3.1 Development of ANN topologies

Data-1 and Data-2 are analyzed through ANN. As ANN model provides relationship between input and
output parameters it affects by varying a few factors used in development of ANN topology. These are number
of randomization, number of hidden layers, type of models, type of functions, number of epochs, etc. All these
factors are varied to develop different topologies. For example number of randomization and hidden layer is
considered as one and two. As more number of hidden layers complexes the solution, only two is considered in
the present work. MLP and RBF models are used as type of models as these are most suited to handle random
industrial data. Moreover, TanhAxon and SigmoidAxon are accounted as different functions through which
input and output parameters are related. Considering these factors sixteen topologies are developed as reported
in Table 2. For each topology 2/3rd data points (i.e. 2/3rd rows of complete data) is used as training and the rest
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as testing. In the present work 440 data points are used for analysis in which 295 and 145 data points are used
for training and testing, respectively.

Table 2 Topologies for ANN network

S.No Networks tested
for present work

Randomization No. of hidden
layers

Model Function

1 TOP-1 1 1 MLP TanhAxon
2 TOP-2 1 1 MLP SigmoidAxon
3 TOP-3 1 1 RBF TanhAxon
4 TOP-4 1 1 RBF SigmoidAxon
5 TOP-5 2 1 MLP TanhAxon
6 TOP-6 2 1 MLP SigmoidAxon
7 TOP-7 2 1 RBF TanhAxon
8 TOP-8 2 1 RBF SigmoidAxon
9 TOP-9 1 2 MLP TanhAxon
10 TOP-10 1 2 MLP SigmoidAxon
11 TOP-11 1 2 RBF TanhAxon
12 TOP-12 1 2 RBF SigmoidAxon
13 TOP-13 2 2 MLP TanhAxon
14 TOP-14 2 2 MLP SigmoidAxon
15 TOP-15 2 2 RBF TanhAxon
16 TOP-16 2 2 RBF SigmoidAxon

The performance of a topology is defined by two parameters: Normalized Mean Square Error (NMSE),
which should be minimum and the correlation coefficient (R), which should have a value near unity15. These
two parameters are defined as:
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4. Results and discussion

The detailed analyses of ANN topologies developed for Data-1 and Data-2 are discussed in subsequent
paragraphs.

4.1. ANN Topologies for Data-1

For Data-1 AT-1, AT-2, AT-3, MF-1 and MF-2 are input parameters to the kiln whereas, T-1, T-2, T-3,
T-4, T-5, T-6, T-7, T-8, T-9, T-10, T-11 and T-12 are considered as output parameters. For ANN analysis actual
flow rates of air at different opening are considered, which are found through multiplication of 600 m3/h to % of
damper opening, shown in Col. 7 to 11 of Table A.1.
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4.1.1. Regression coefficient for Data-1

Using Data-1, shown in Table A.1, topologies, TOP-1 to TOP-16, are developed and solved using
software NeuroSolutions 4.0. For these networks the average values of regression coefficient, R, are shown in
Table 3. The average value of R is computed using R values of individual temperatures, T-1 to T-12. In fact,
this value of R is found considering constant values of iron ore, feed coal, slinger coal and sponge iron as 23.44
T/h, 8.695 T/h, 8.97 T/h and 15.022 T/h, respectively. These are average values of iron ore, feed coal, slinger
coal and sponge iron and found using data shown in Table A.1. Table 3 shows that average value of R is
maximum for topology, TOP-11, which is predicted as 0.7509. This value is found with 1000 epochs. When
topology, TOP-11, is trained with increased number of epochs the average value of R is shown in Table 4.

Table 3 Average values of R for different ANN topologies developed for Data-1

Networks tested
for present work

Randomization No. of hidden
layers

Model Function Average
values of R

TOP-1 1 1 MLP TanhAxon 0.7106
TOP-2 1 1 MLP SigmoidAxon 0.5663
TOP-3 1 1 RBF TanhAxon 0.7335
TOP-4 1 1 RBF SigmoidAxon 0.6297
TOP-5 2 1 MLP TanhAxon 0.7282
TOP-6 2 1 MLP SigmoidAxon 0.6008
TOP-7 2 1 RBF TanhAxon 0.7369
TOP-8 2 1 RBF SigmoidAxon 0.6583
TOP-9 1 2 MLP TanhAxon 0.7370
TOP-10 1 2 MLP SigmoidAxon 0.4516
TOP-11 1 2 RBF TanhAxon 0.7509
TOP-12 1 2 RBF SigmoidAxon 0.4472
TOP-13 2 2 MLP TanhAxon 0.7172
TOP-14 2 2 MLP SigmoidAxon 0.3376
TOP-15 2 2 RBF TanhAxon 0.7377
TOP-16 2 2 RBF SigmoidAxon 0.4036

Table 4 Average values of R for different number of epochs for topology, TOP-11

Number of epochs Average values of R
1000 0.7509
2000 0.7695
3000 0.7230
4000 0.7437
5000 0.7415

Table 5 Testing report for Data-1

Parameter T-1 T-2 T-3 T-4 T-5 T-6 T-7 T-8 T-9 T-10 T-11 T-12
NMSE 0.197 0.199 0.205 0.548 0.432 0.828 0.359 0.360 0.461 0.539 0.426 0.281
MAE 10.58 10.37 10.8 9.22 8.4 8.58 9.64 10.82 10.77 12.8 10.9 10.15
R 0.898 0.897 0.893 0.681 0.762 0.445 0.803 0.809 0.742 0.684 0.766 0.854

Table 4 shows that for 2000 epochs TOP-11 finds best average value of R, which comes out as 0.7695.
For this topology detailed report of testing is shown in Table 5, which indicates R values for individual
temperatures, T-1 to T-12. The mean absolute error (MAE) and normalized mean squared error (NMSE) are
10.25 and 0.403, respectively, for TOP-11 with 2000 epochs.
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In fact, for Data-1 average value of R is also not very significant, which may be due to large variation
in input data. For example temperature T-1 varies from 1108 to 1002◦C, which is 9.57%, as shown in Table 1.
Similarly, T-2, T-3, T-4, T-5, T-6, T-7, T-8, T-9, T-10, T-11 and T-12 vary by 10.2%, 10.5%, 9.16%, 8.48%,
7.53%, 10.1%, 13%, 13.2%, 16.1% and 12.5%, respectively. In the similar pattern variations in input
parameters  such  as  flow  rate  of  air  at  position,  AT-1,  AT-2,  AT-3,  MF-1  and  MF-2,  are  observed  as  20%,
9.524%, 78.6%, 18.87% and 13.04%, respectively. It is to be noted that variation in flow rate of air at AT-3 is
maximum, i.e. 78.6% where flow rate of air vary from 8400 m3/h to 1800 m3/h.  In  fact,  the  maximum  and
minimum values of % of damper opening for AT-3, reported in Table 1, are 14 and 3, respectively. These are
corresponding to 8400 m3/h to 1800 m3/h. The combined effect of all values of air inlet causes variation in total
amount of air enters to kiln by 7.44% where maximum and minimum amounts of air are 72600 m3/h (i.e. 87.12
t/h) and 67200 m3/h (i.e. 80.64 t/h), respectively. Further, it is observed that such large variation in input and
output data of Data-1 is due to variation in quality of iron ore and coal, accretion formation in kiln, etc. As
TOP-11 with 2000 epochs shows best average value of R it is used for further analysis.

4.1.2 Error analysis for Data-1

For topology, TOP-11, with 2000 epochs the values of temperatures, which are the output parameter in
the present case, obtained from industry and that predicted using software NeuroSolutions 4.0 are compared.
The values of temperature, T-1, found through industry and software are plotted in Fig. 3 where 145 data points
are shown which are considered for testing. Fig. 3 shows that industrial data vary significantly from 1003 to
1108°C, however, the predicted values of T-1 using software shows variation from 1004.9 to 1094.9°C. The %
variation in values of T-1 obtained from industry and predicted using software is 9.1% and 8.2%, respectively.

Fig. 3 Values of T-1 obtained from industry and software

The  %  error,  E,  is  computed  using  Eq.  3,  which  denotes  the  deviation  between  two  values  of  T-1
predicted using software and that collected from industry. For all 145 data points of testing, E is computed.
Amongst these maximum (most positive value) and minimum (most negative value) values of E are found. This
computation shows that for values of T-1 the maximum deviation, E, is found as -3.2%. It indicates that value
of T-1 obtained from industry should be increased maximum by 3.2% to fall within the range predicted using
software. It can be done through varying input parameter i.e. flow rate of air. Therefore, to obtain best
relationship between input and output parameters the flow rate of air should be varied in such a manner so that
temperature T-1 should be within the range predicted from software i.e. 1004.9 to 1094.9°C instead of 1003 to
1108°C used in sponge iron industry.
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Similarly, comparison between values for other output temperatures such as T-2 to T-12, obtained from
industry and predicted using software NeuroSolutions 4.0, for topology, TOP-11, with 2000 epochs are shown
in Table 6. Along with this, the variation for temperature, T-1, is also reported in Table 6 for clarity.

From  Table  6  it  is  clear  that  values  of  E  for  temperature,  T-1  to  T-12,  found  from  industry  and
computed through software are within ±10%. In fact, the value of maximum temperature in output parameters,
T-1 to T-12, predicted through software is 1095.8°; however, it was 1109° in Data-1 shown in Table 1 and 6.
This meets the process requirement as accretion formation inside the kiln starts at 1100°C. It is caused by low
melting eutectic compounds of the FeO, SiO2, and Al2O3 in combination with CaO or MgO from desulphurising
agent used in the process. As the maximum temperature predicted through software is 1095.80C, which is less
than 11000C, the results fall in the feasibility range of operation and satisfy the process requirement.

Table 6 Comparison of values of temperatures, T-1 to T-12

Temp. Variation in
data obtained
from industry

Variation in
values predicted
using software

% variation in
data obtained
from industry

% variation in
values predicted
through software

Value
of E
(%)

T-1 1003-1108 1004.9-1094.9 9.1 8.2 -3.2
T-2 986-1092 989.3-1081.7 9.7 8.54 3.14
T-3 976-1085 982.3-1076.1 10.05 8.7 -3.08
T-4 992 -1089 1024.9-1071.6 8.9 4.36 3.86
T-5 1015-1109 1047.2-1095.8 8.2 4.43 4.5
T-6 1019-1098 1050.1-1088.6 7.2 3.5 4.6
T-7 993-1089 1000.5-1069.6 8.8 6.5 -3.8
T-8 946-1048 977.7-1031.1 9.7 5.2 3.8
T-9 890-989 918.2-960.9 10.0 4.4 3.9
T-10 830-953 865.6-921.7 12.9 6.1 -9.7
T-11 765-911 799.4-862.4 16.02 7.3 -9.9
T-12 700-800 730.2-786.9 12.4 7.2 -4.2

Further, Table 6 shows that as values of temperatures, T-10 and T-11, carry significant error such as -
9.7% and -9.9%, respectively, these are to be controlled stringently to reduce the % error. For temperature, T-
10, large deviation in values, obtained from industrial data and predicted using software, is mainly caused by
six data points obtained from industry as indicated through drought and peaks shown in Fig. A.1. The values of
temperatures at these data points are summarized in Table 7. If these points are discarded from industrial data
the value of E is reduced by -4.6%. Similarly, deviation of -9.9% in value of T-11, as evident from Table 6, is
observed  due  to  three  data  points  in  industrial  values  as  can  be  seen  from  Fig.  A.2.  Table  7  shows  that
discarding these points value of E can be decreased upto -4.3%.

Fig. A.1 Values of T-10 obtained from industry and predicted from software
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Fig. A.2 Values of T-11 obtained from industry and predicted from software

Table 7 Points discarded from industrial data

Points falling away from the predicted limitsTemp
No. of
points

Values Data point
Value of E before

discarding the
points

Value of E after
discarding the

points
T-10 6 836, 855, 952, 953,

950, 830
2, 13, 39, 43,

90, 91
-9.7 -4.6

T-11 3 769, 765, 911 2, 91, 118 -9.9 -4.3

It is observed from Table 6 and 7 that % errors observed in industrial values and that predicted through
software are reduced from ±10% to ±4.6% by discarding a few points from industrial data. As the value of E is
within ±5%, it is acceptable. These data are very less in number which may be discarded without disturbing the
process performance. Further, topology TOP-11 with 2000 epochs is applied to the revised set of Data-1, where
data points shown in Table 6.5 are discarded. The average value of R for the revised data is found as 0.7857,
which is the improved value in comparison to that for original Data-1, which was 0.7695 as shown in Table 4.

4.2 ANN Topologies for Data-2

The flow rate of feed and product are confined to data set, which is named as Data-2. It consists of flow
rate of iron ore, feed coal and slinger coal as input parameters and sponge iron as output parameters. Slinger
coal contains flow rate of fine, medium and coarse coal whereas feed coal carries only coarse coal. It is due to
the process requirement.  Therefore,  Data-2 has five input  parameters  such as  flow rate  of  iron ore,  feed coal,
fine-, medium- and coarse-slinger coal and one output parameter as flow rate of sponge iron. These data are
shown in Table A.1 for day-1. In the present section ANN analysis of Data-2 is carried out and results found are
discussed:

4.2.1 Regression coefficient for Data-2

For Data-2 topologies, TOP-1 to TOP-16, are developed and solved using software NeuroSolutions 4.0.
For these networks the value of regression coefficient, R, are shown in Fig. 4. This value of R is found
considering constant values of temperatures, T-1, T-2, T-3, T-4, T-5, T-6, T-7, T-8, T-9, T-10, T-11 and T-12,
as 1054, 1041, 1032, 1058, 1079, 1071, 1072, 1043, 942, 896, 837 and 762°C, respectively, and flow rate of air
as 11401, 11877, 3539, 31154 and 12792 m3/h at position AT-1, AT-2, AT-3, MF-1 and MF-2, respectively.
Fig. 4 shows that R is maximum for topology, TOP-7, which is predicted as 0.8938. This value is found using
1000 epochs. When topology, TOP-7, is trained with number of epochs as 2000, 3000, 4000 and 5000 the
values of R are found as 0.9206, 0.8815, 0.8675 and 0.8689, respectively. As a result of it, value of R is
maximum for TOP-7 when 2000 epochs are considered, which comes out as 0.9206. For this topology, value of
MAE and NMSE are found as 0.09 and 0.162, respectively. For Data-2, these values are considerably low in
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comparison to Data-1. It shows that TOP-7 relates the input and output parameters well for Data-2 than that are
carried out using TOP-11 for Data-1. It is also indicated through average value of R as it is 0.9206 and 0.7695
for Data-2 and Data-1, respectively. As TOP-7 with 2000 epochs shows best average value of R it is used for
further analysis of Data-2.

Fig. 4 Average values of R for different ANN topologies developed for Data-2

Fig. 5 Flow rate of sponge iron obtained from industry and predicted from software

4.2.2 Error analysis for Data-2

For topology, TOP-7, with 2000 epochs the flow rate of sponge iron, which is the output parameter in
the present case, obtained from industry and predicted using software NeuroSolutions 4.0 is compared through
Fig. 5. There are 145 data points considered for testing. This figure shows that industrial data vary from 13.53
to 15.355 T/h, however, the predicted values of flow rate of sponge iron using software shows variation from
13.83 to 15.31 T/h. The % variation in data obtained from industry and predicted from software is 11.9% and
9.7%, respectively. The % error, E, is computed using Eq. 3 for all points of testing, i.e. 145. It shows that for
flow rate of sponge iron the maximum deviation, E, is found as 3.99%. As the value of E is within ±5%, it is
acceptable. Therefore, to obtain best relationship between input and output parameters the flow rate of iron ore,
feed coal and slinger coal should be varied in such a manner so that flow rate of sponge iron should be within
the range predicted from software i.e. 13.83 to 15.31 T/h instead of 13.53 to 15.355 T/h used in sponge iron
industry.
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4.3.  Selection of best value of input parameters

The operating range of output parameters, flow rate of sponge iron and temperatures, T-1 to T-12,
predicted for Data-1 and Data-2, shown in Section 4.2.2 and Table 6, can be maintained in the process by
adjusting input parameters. However, it is not known a priory that how each input parameters must be set to get
actual output. For this purpose one should observe output parameters while varying values of input parameters.
It is a cumbersome approach which requires considerable experimentation to set the optimum input parameters.
Thus, a better option is to find out values of input parameters correspond to desired output. For this purpose
parameters T-1, T-2, T-3, T-4, T-5, T-6, T-7, T-8, T-9, T-10, T-11, T-12 and flow rate of sponge iron are
considered as input whereas flow rate of iron ore, feed coal, fine-, medium- and coarse-slinger coal, AT-1, AT-
2, AT-3, MF-1 and MF-2 are accounted as output parameters. Further, the values of T-1, T-2, T-3, T-4, T-5, T-
6, T-7, T-8, T-9, T-10, T-11, T-12 and flow rate of sponge iron considered in Data-1 and Data-2 are varied in
such a manner so that all values fall within the operating range shown in Table 6 and Section 4.2.2. For
example, if value of T-1 is 990°C, it is replaced with 1004.9°C. While varying in such manner values of T-1, T-
2, T-3, T-4, T-5, T-6, T-7, T-8, T-9, T-10, T-11, T-12 and flow rate of sponge iron are considered to be the
desired output. For these output parameters, values of input parameters are found using Neurosolutions 4.0.

For this purpose, topologies, TOP-1 to TOP-16, are developed and solved using software
NeuroSolutions 4.0. For these topologies the average values of regression coefficient, R, are shown in Table 8.
It shows that average value of R is maximum for topology, TOP-5, which is predicted as 0.8621 using 1000
epochs. When topology, TOP-5, is trained with number of epochs as 2000, 3000, 4000 and 5000 the average
value of R is found as 0.8791, 0.7674, 0.8513 and 0.8161, respectively. Therefore, the average value of R is
maximum for TOP-5 when 2000 epochs are considered, which comes out as 0.8791. For this purpose 145 data
points are considered for testing. Based on this analysis the average value of output, iron ore, feed coal, fine-,
medium- and coarse-slinger coal, AT-1, AT-2, AT-3, MF-1 and MF-2, is found as 23.4 T/h, 8.7 T/h, 1.8 T/h,
3.6 T/h, 3.5 T/h, 11391.9 m3/h, 11857.2 m3/h, 3602.2 m3/h, 31110.9 m3/h and 12772.7 m3/h, respectively. The
values of these parameters are found through averaging the 145 points of testing condition. As these values of
operating parameters correlate the output with appreciable average value of R, these are considered as most
suitable values of input parameters for desired output parameters. Thus, these values of input parameters are
considered optimum for the present industrial data.

Table 8 Average value of R for different ANN topologies when T-1 to T-12 and sponge iron are treated as
input parameters

Networks tested
for present work

Randomization No. of hidden
layers

Model Function Average
values of R

TOP-1 1 1 MLP TanhAxon 0.8399
TOP-2 1 1 MLP SigmoidAxon 0.6803
TOP-3 1 1 RBF TanhAxon 0.8282
TOP-4 1 1 RBF SigmoidAxon 0.4446
TOP-5 2 1 MLP TanhAxon 0.8621
TOP-6 2 1 MLP SigmoidAxon 0.6084
TOP-7 2 1 RBF TanhAxon 0.8084
TOP-8 2 1 RBF SigmoidAxon 0.5422
TOP-9 1 2 MLP TanhAxon 0.8356
TOP-10 1 2 MLP SigmoidAxon 0.4818
TOP-11 1 2 RBF TanhAxon 0.7837
TOP-12 1 2 RBF SigmoidAxon 0.3056
TOP-13 2 2 MLP TanhAxon 0.8487
TOP-14 2 2 MLP SigmoidAxon 0.4420
TOP-15 2 2 RBF TanhAxon 0.7608
TOP-16 2 2 RBF SigmoidAxon 0.4112
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Table 9 Comparison of optimum values of input parameters with that are used in the process

Operating parameter Shown in Fig. 1 Optimum input parameters
predicted

%
deviation

Iron ore 23.61 tph 23.4 tph 0.89
Feed coal 8.5 tph 8.7 tph 2.4
Slinger coal 9.2 tph 8.9 tph 3.3
Air through position, AT-1,
AT-2, AT-3, MF-1 and MF-2

79.8 tph 70734.9 m3/h (i.e. 79.223 tph) 0.72

4.4. Comparison with the published data

It appears that such type of work i.e. application of ANN on industrial data of sponge iron process is not
available in the literature. Thus, it is not possible to compare the results of the present work with published
literature. However, the comparison of results of ANN analysis with industrial data, shown in Table 6, 7 and
Section 4.2.2, indicates that the error between two values fall within ±5%. Thus, the results of ANN analysis are
compared well with the industrial data, which shows the reliability of the analysis.

However, the values of optimum operating parameters found through ANN are different in comparison
to that are used in the process as shown in Fig. 1. The results of comparison are shown in Table 9. It shows that
% deviation between two values is less than 4%, which indicates that to get desired values of output parameters
one should change the values of input parameters slightly. In fact, these optimum input parameters also
somewhat reduces the coal consumption. Further, it is noted that maintaining the input parameters at optimum
values the values of temperatures, T-1 to T-12, fall with the feasible range i.e. less than 1100°C as shown in
Table 6. Thus, present analysis also suits the process requirement.

5. Conclusions

In the present work the input output data of a typical sponge iron process are collected in two sets:
Data-1 and Data-2. Sixteen ANN topologies are developed for each data set considering number of
randomization, number of hidden layers, type of models, type of functions, number of epochs, etc. The salient
features of the study are shown below:

1. For Data-1 TOP-11 with 2000 epochs finds best average value of R, which comes out as 0.7695. For
this topology the MAE and NMSE are 10.25 and 0.403, respectively. The error analysis of TOP-11
shows that % errors observed in industrial values and that predicted through software are fall within
±10% which is reduced to ±4.6% by discarding very few points from industrial data.

2. The average value of R for Data-2 is maximum for TOP-7 when 2000 epochs are considered, which
comes out as 0.9206. For this topology, value of MAE and NMSE are found as 0.09 and 0.162,
respectively.  The error analysis indicates that for flow rate of sponge iron the maximum deviation, E,
is found as 3.99%.

3. For Data-2 topology, TOP-7, relates the input and output parameters well than that are carried out for
Data-1 using TOP-11.

4. The tested output parameters meet the process requirements.
5. The values of input parameters correspond to desired output are found through ANN. Based on this

analysis the optimum value of iron ore, feed coal, slinger coal and air at positions, AT-1, AT-2, AT-3,
MF-1 and MF-2, is found as 23.4 tph, 8.7 tph, 8.9 tph and 79.223 m3/h, respectively. These values are
within 4% deviation than that are used in the process.

Nomenclature

di Desired response for ith exemplar
dij Desired output for exemplar ‘i’ at processing element ‘j’
d Mean desired value for the dataset considered
N Number of exemplars in the data set
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P Number of nodes in output layer
R Coefficient of correlation
yi Network output for exemplar ‘i’
y Mean network output value for the dataset considered

Abbreviations
ABC After burning chamber
DSC Dust settling chamber
ESP Electrostatic precipitator
MAE Mean absolute error
MSE Mean square error
NMSE Normalized mean square error
RC Rotary cooler
RK Rotary kiln
WHRB Waste heat recovery boiler
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Appendix A

Table A.1 Complete operating data of sponge iron process

Col. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
S.

No.
Iron
ore

Feed
coal

Fines Medium Coarse Sponge
iron

AT-
1

AT-
2

AT-
3

MF-
1

MF-
2

T-1 T-2 T-3 T-4 T-5 T-6 T-7 T-8 T-9 T-
10

T-
11

T-
12

1 21 8.2 1.75 2.65 2.95 13.53 16 20 13 43 20 1091 1068 1081 1077 1076 1057 1061 1007 954 902 854 773
2 21.5 8.2 1.75 2.65 2.95 13.845 17 20 13 43 20 1094 1087 1083 1077 1068 1047 1044 1000 951 901 849 770
3 22 8.5 1.8 2.75 3 14.16 17 20 13 43 20 1081 1072 1064 1061 1064 1045 1051 1011 947 897 847 766
4 22.5 8.6 1.8 2.95 3.1 14.475 18 20 14 43 20 1079 1069 1062 1052 1077 1056 1075 1011 953 905 863 784
5 22.5 8.6 1.8 2.95 3.1 14.475 18 20 14 44 20 1055 1045 1038 1035 1080 1061 1062 1029 951 889 851 770
6 22.7 8.6 1.8 3 3.15 14.601 18 20 14 45 20 1043 1033 1026 1034 1083 1062 1070 1030 954 906 854 775
7 22.7 8.6 1.8 3 3.15 14.601 18 20 14 46 21 1064 1054 1047 1027 1085 1066 1065 1039 974 922 874 793
8 22.9 8.6 1.8 3 3.15 14.727 18 20 14 47 21 1057 1047 1040 1028 1081 1060 1074 1041 974 926 874 795
9 22.9 8.6 1.8 3 3.15 14.727 18 20 14 48 21 1080 1070 1063 1049 1092 1073 1076 1048 977 925 877 796
10 23 8.6 1.8 3 3.15 14.09 18 20 13 48 21 1089 1079 1072 1054 1103 1089 1082 1070 970 922 870 791
11 23 8.6 1.8 3 3.15 14.09 18 20 11 49 21 1103 1093 1086 1060 1102 1090 1085 1077 973 921 873 792
12 23 8.6 1.8 3 3.15 14.09 18 20 10 49 21 1099 1089 1082 1063 1094 1080 1077 1053 940 890 838 759
13 23 8.6 1.8 3 3.15 14.09 18 20 10 49 21 1108 1098 1091 1067 1089 1077 1065 1039 931 879 831 750
14 23 8.6 1.8 3 3.15 14.09 18 20 10 49 21 1106 1096 1089 1066 1084 1070 1060 1078 930 880 828 749
15 23 8.6 1.8 3 3.15 14.09 18 20 10 49 21 1102 1092 1085 1062 1090 1078 1071 1036 932 882 834 753
16 23 8.6 1.75 3 3.15 14.09 19 20 10 49 21 1097 1087 1080 1060 1092 1078 1078 1049 939 891 839 760
17 23 8.6 1.75 3.15 3.15 14.09 19 20 10 49 21 1092 1082 1075 1049 1096 1084 1089 1062 946 896 848 767
18 23 8.6 1.8 3.15 3.2 14.09 18 21 10 49 20 1079 1069 1062 1046 1109 1095 1097 1064 948 898 846 767
19 23 8.6 1.8 3.15 3.2 14.09 18 21 10 49 20 1066 1056 1049 1046 1104 1102 1092 1055 944 894 846 765
20 23 8.6 1.8 3.15 3.2 14.09 18 21 10 49 20 1059 1049 1042 1047 1104 1100 1091 1058 949 899 847 768
21 23 8.6 1.75 3.15 3.2 14.09 18 21 10 49 20 1071 1061 1054 1060 1104 1092 1087 1056 927 884 841 760
22 23 8.6 1.75 3.15 3.2 14.09 18 21 10 49 20 1105 1095 1088 1087 1088 1074 1088 1061 925 882 835 756
23 23 8.7 1.75 3.3 3 14.09 19 21 10 49 20 1104 1094 1087 1089 1101 1089 1069 1031 920 877 834 753
24 23 8.7 1.75 3.3 3 14.09 19 21 10 49 20 1099 1089 1082 1088 1102 1088 1069 1030 916 950 826 747
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