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Abstract : Lipases are used in various sectors, as pharmaceutical, food or detergency industry.
Their advantage versus classical chemical catalysts is that they exhibit a better selectivity and
operate in milder reaction conditions. Theses enzymes can also be used in lipophilization
reactions corresponding to the grafting of a lipophilic moiety to a hydrophilic one such as
sugar, amino acids and proteins, or phenolic compounds. Lipases are the most widely used
class of enzymes in organic synthesis. Availability of large number of commercial preparations,
their broad specificity and relatively better stability (as compared to other enzymes) in media
containing organic solvents have all been contributing factors for this. This review has a sharp
focus on their specificity. The recent results with catalytic promiscuity have shown that lipases
are even more versatile than thought so far. These results have also prompted workers to
rationalize the classification of specificity in terms of substrate promiscuity, condition
promiscuity and catalytic promiscuity. The review also attempts to recast the known
information on specificity of lipases in the context of enzyme promiscuity.
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1. Introduction

The present enzyme industry is a result of modern biotechnology boom. The world market for enzymes

is expected to reach $7 billion by 2013*. A major fraction of the enzyme industry is represented by lipases (EC
3.1.1.3)% Lipases are the most widely used class of enzymes in biotechnology®*. This includes their
applications in organic synthesis and kinetic resolution of racemic compounds®®. There are three main reasons:

a.

Foremost reason, which is often overlooked, is that industrial preparations of many lipases were available in
view of their applications in early industrial enzymology. The major early application was in fat splitting.
Hence, when other areas like enzyme catalysis in low water media developed, these became a convenient
and preferred choice.

Lipases are somewhat a unique class of enzymes in carrying out reactions often in heterogeneous media.
Associated with this fact is that a very large number of lipases show the phenomenon of interfacial
activation. The latter phenomenon distinguishes lipases from esterases. “To withstand the denaturing effect
of the interface, lipases have evolved unusually stable structures that may survive even the effect of organic
solvents™.

Lipases have broad substrate specificities. Esters of fatty acids as well as alcohols of various chain lengths
are hydrolyzed. Similarly triglycerides formed from long chain fatty acids of varying chain lengths are also
hydrolyzed. Apart from hydrolysis, lipases can also catalyze esterification, interesterification and
transesterification in low water media.
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What has made lipases even more versatile is the fast developing area of catalytic promiscuity”®.
Despite the extensive range of microbial lipases, the use of these enzymes on an industrial scale is still limited
due to their high production costs as they need to be grown in fermenters and further downstream processing
and product formulation adds to cost. The technological load to implement a microbe based lipase product
stands high. Further, they also have acceptability issues. This promotes the search for other sources of the
enzyme’. Lipases have been isolated from various sources: bacterial (45%), fungal (21%), animal (18%), plant
(11%), and algal (3%)'°. While looking for advantages like low cost, specific applications, easy acceptability
and their direct application as biocatalyst with partial purification, plants can be a novel source. Lipases in plant
tissues mainly include non-specific lipid acylhydrolases, phospholipases Al, A2, B, C, D, monoacylglycerol,
and triacylglycerol lipases. TAG" lipases are mainly concentrated in seeds as energy reservoirs™*. They are
stable in pH range of 4.0 to 9.0, temperature range of 25°C to 60°C and have varied molecular weight from 19
to 270 kDa™. Recently seed lipases have been the focus of attention as biocatalysts. In fact, lipases present in
the crude extract from plant sources can directly catalyze hydrolysis or synthesis reactions of lipids which is one
of the advantages™. They also have very specific applications which have been taken up in a later part of the
review. However, there is a different side of the coin also. Very few plant lipases have been explored due to the
complications of laborious purification steps™.

2. Sources of lipases

Lipases are ubiquitous in nature and are found in multiple unicellular and multicellular organisms.
However, yeast and fungi are one of the most important sources of lipases for industrial applications'®. Most
commercially important lipase-producing yeasts belong to the class of ascomycetous yeast, like Candida sp.
Most of the lipases are extracellular and can be obtained either by submerged fermentation (SmF) or by solid-
state fermentation (SSF)*. Lipolytic yeasts are found in a variety of oil contaminated habitats including soil
contaminated with oil, wastes of vegetable oils, dairy waste and deteriorated food"®. There are number of lipase
producing yeast sources compiled by several authors, however only a few have been commercially exploited for
the bulk production'. Some important sources are: C. antarctica, C. rugosa, Candida tropicalis, Candida
curvata, Candida cylindraceae, Candida deformans, Candida parapsilosis, Candida utilis, Candida valida,
Candida viswanathii, Galactomyces geotricum, Arxula adeninivorans, Saccharomyces cerevisiae, Yarrowia
Iipolyticag, Trichosporon fermantans, Trichosporon asahii, Rhodotorula mucilaginosa, and Aureobasidium
pullulans®.

3. Structure of lipases

The three-dimensional structures of many lipases have been determined by X-ray crystallography.
Table 1 shows the illustrative list of lipases whose X-ray structures have been determined. Based upon these
studies, the following structural features common to all lipases can be identified: (1) All the lipases are
members of “o/B-hydrolase fold” family i.e., these have a structure which is composed of a core of
predominantly parallel B strands surrounded by o helices®. (2) The active nucleophilic serine residue rests at a
hairpin turn between a B strand and an a helix in a highly conserved pentapeptide sequence Gly-X-Ser-X-Gly,
forming a characteristic B-turn-o. motif named the ‘nucleophilic elbow’®. Lipase B from Candida antarctica
(CALB) does not have a conserved pentapeptide sequence Gly-X-Ser-X-Gly, around the active site which is
present in most of the other lipases?. (3) The active site of lipases is formed by a catalytic triad consisting of
amino acids serine, histidine and aspartic acid/glutamic acid®. The active site of both lipases and proteases are
chemically similar but structurally different®.

The seryl hydroxyl group in lipases is oriented differently than in serine proteases and this result in
inverted stereochemistry of the catalytic triad®. (4) Presence of a lid or flap composed of an amphiphilic a helix
peptide sequence that covers the active site’. In case of lipase from Geobacillus thermocatenulatus, lid has a
complex structure involving a large percentage of the amino acids of the enzyme and forms a double lid®.
Lipase B from C. antarctica has a very small and simple lid which does not fully isolate the active center of the
enzyme in the closed form*. Lipase from guinea-pig has a “mini-lid” which is composed of only five amino
acids®. (5) These have four substrate binding pockets for triglycerides: an oxyanion hole and three pockets

! Abbreviations used: TAG, triacylglycerol acylhydrolase; HMFS, human milk fat substitutes; CPL, Carica papaya lipase;
sn-BSP, 1-butyroyl-2-stearoyl-3-palmitoyl-snglycerol; TG, triacylglycerol; GA3, gibberellic acid; ABA, abscisic acid; BR,
brassinosteroids; PMSF, phenyl methane sulfonyl fluoride; FA, fatty acid.
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accommodating the fatty acids bound at positions sn-1, sn-2, and sn-3. Two backbone amides of a residue in the
N-terminal region of the lipase and the C terminal neighbor of the catalytic serine form the oxyanion hole®.

Table 1- lllustrative list of lipases whose X-ray structures have been determined along with their

specificity (www.pdb.org).

Lipase Specificity References

source

Bacterial Bacillus thermocatenulatus 1,3-Regiospecific [26]
Burkholderia glumae (Pseudomonas glumae) | Non-specific [3]
Burkholderia cepacia (Pseudomonas cepacia) | Non-specific [3]
Bacillus subtilis - -
Chromobacterium viscosum Non-specific [27]
Pseudomonas fluorescens® Non-specific [27]

Fungal Aspergillus nigera 1,3-Regiospecific [27]
Candida rugosa (Candida cylindracea)
Non-specific
Candida antarctica A° Trans specific [26]
Candida antarctica B 1,3-Regiospecific [3]
Geotrichum candidum cis- A °(unsaturated fatty
Mucor javanicus® acids) [28]
Penicillium camembertii (Penicillium 1,3-Regiospecific [3]
cyclopeum) 1,3-Regiospecific -
Penicillium expansum - [27]
Rhizomucor miehei (Mucor miehei) 1,3-Regiospecific [28]
Rhizopus delemar 1,3-Regiospecific [3]
Rhizopus oryzae 1,3-Regiospecific [4]
Rhizopus niveus 1,3-Regiospecific [29, 4]
Thermomyces lanuginosa (Humicola 1,3-Regiospecific [5]
lanuginosa) 1,3-Regiospecific
Yarrowia lipolytica

Plant Brassica napus (rapeseed) ° 1,3-Regiospecific

Animal Canis lupus familiaris (dogs) - -
Equus caballus (equine) - -
Porcine pancreatic lipase® 1,3-Regiospecific [3]
Human pancreatic lipase 1,3-Regiospecific [3]
Sus scrofa (wild bear) - -

4. Mechanism of lipase action

Due to the similarity of the catalytic triad found in lipases and proteases, the mechanism of lipase
catalysis is similar to that of serine protease catalysis i.e., involves formation of two tetrahedral intermediates™.
The mechanism involves the nucleophilic attack of hydroxyl group of serine residue (present in the active site)
on carbon from the ester bond of susceptible substrate. This results in the formation of tetrahedral intermediate
which then loses an alcohol molecule to give an acyl-enzyme intermediate. A water molecule then attacks the
complex (nucleophilic attack) to give tetrahedral intermediate, which finally, loses an acid molecule to give the
enzyme in its native form?”.

5. Food industry

The advantage of using plant lipases in food industries as compared to other sources of lipase is their
acceptability in comparison to microbial lipases. Plant lipases have improved stability in solvent catalyzed
reactions such as interesterification. Additional importance of plant lipases are in their low cost of production
and downstream processing. In this context, Carica papya lipase (CPL) has been used successfully by Mangos
et al. in the synthesis of low-calorie short and long-chain triacylglycerols (TAG) for use in infant formulae.


http://www.pdb.org/
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Papaya lipase has also been used to produce structured triacylglycerols using interesterification reactions of
ethyl esters with tripalmitin®. The unavailability and high cost of human milk fat can be compromised through
the synthesis of human-resembling milk fat by carrying out transesterification of tripalmitin with fatty acids of
rapeseed oil using papaya latex®. Recently, human milk fat substitute has been synthesized using CPL self-
immobilized in papaya latex as a biocatalyst and used as a low-cost alternative to commercial lipases®. Other
examples are in the use of CPL catalyzed interesterification of palm oil, which is a low cost fat, for the
synthesis of cocoa butter equivalent which can be used in the production of chocolates at a much cheaper rate.
This also produces fewer by-products as compared to chemical synthesis*. On similar lines, fat and oil
modification using CPL based on sn-3 stereoselectivity in TAG interesterification has also been reported by
Villeneuve et al®*. From the above, it can be concluded that CPL possess various useful commercial application
and is an inexpensive plant enzyme preparation from the crude papaya latex®’.

6. Plant lipase purification and recombinant production — challenges and scope Source

Lipases have been purified from various plant parts. It has been reported from latex of C. papaya and
scutella of Z. mays. Oilseed lipases have been reported to be localized in oil bodies*’or glyoxysomes®. Table 2
summarizes some of the plant lipases with their corresponding plant parts used for extraction. Many plant parts
such as leaves of Triticum L. species®, whole plant parts of Ricinus communis®, oat bran, etc., are rich in

phenolic content.

Table 2- Sources of plant lipases.

Plants Family Plant part Reference
S
Coconut (Cocos nucifera linn) Arecaceae Seed [41]
Sunflower (Heliantus annuus L.) Arecaceae Seed [42]
Vernonia galamensis Arecaceae Seed [43]
Canola (Brassica napus L.) Brassicaceae Seed [44]
Jacaranda mimosifolia Brassicaceae Nectar [45]
Bobacco fruit (Carica pentagona) Caricaceae Latex [46]
Papaya (Carica papaya) Caricaceae Latex [47]
Dianthus caryophyllus Caricaceae Petal [48]
Castor beans Caryophyllaceae Seed (endosperm) [49]
Euphorbia characias Euphorbiaceae Latex [50]
Euphorbia wulfenii Euphorbiaceae Latex [4]
French Peanut (Panchira aquatic Euphorbiaceae Seed [51]
Bombacaceae)
Lupin (Lupinus luteus L.) Fabaceae Seed [52]
Laurel (Laurus nobilis L.) Fabaceae Seed [53]
Bean (Pentaclethra macrophylla Benth L.) Leguminosae Seed [54]
Linseed (Linum usitatissimum L.) Linaceae Seed [55]
Ficus carica Moraceae Latex [56]
Sesame (Sesamum indicum L..) Pedaliaceae Seed [57]
Barley (Hordeum vulgare L.) Poaceae - [58]
Oat (Avena fatua) Poaceae Seed [59]
Rice (Oryza sativa) Poaceae Seed [60]
Oryza sativa cv. Dongjin Poaceae Seed coat [61]
Oryza sativa L. ssp. Indica var. IR64 Poaceae Seed [62]
Sorghum (Sorghum bicolor L.) Poaceae Seed [63]
Wheat Lipases (Triticum aestivum L.) Poaceae Seed [64]
Black-Cumin (Nigella sativa L.) Ranunculales Seed [65]
Almond (Amygdalus communis L.) Rosaceae Seed [66]
Lycopersicon esculentum Solanaceae SeedS [67]
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7. Applications of lipases

As mentioned earlier, lipases can carry out not only hydrolytic reactions but also synthetic reactions
like esterification, acidolysis, alcoholysis etc. These can carry out reactions in both aqueous and organic media,
have broad substrate specificity, and can catalyze variety of chemo-, regio- and enantioselective
biotransformations™°. This versatility of lipases makes them the enzymes of choice for application in food,
detergent, pharmaceutical, leather, textile, cosmetic and paper industries®. One of the most important reasons for
the large number of applications of lipases is that they exhibit regio, substrate and stereospecificity. As
mentioned earlier some lipases Exhibit 1,3 regiospecificity and can be used to (inter)esterify natural triglyceride
in a regioselective fashion. For example, cocoa butter equivalents [predominant triglycerides of cocoa butter are
glycerols with oleic acid (O) in the sn-2-position and stearic (S) and palmitic (P) acids in the sn-1- and sn-3-
positions (i.e., SOS and SOP)] have been produced by lipase-catalyzed interesterification of suitable natural
triglycerides, such as middle fraction of palm oil (containing palmitic acid moiety at 1 and 3 positions and oleic
acid at 2, POP) or sunflower oil (having a high content of oleic acid, OOO) with stearic acid or tristearin
(SSS)®. Lipases discriminate against omega 3 polyunsaturated fatty acids (PUFA) such as eicosapentaenoic
acid (EPA) and docosahexaenoic acid (DHA) and hence lipase catalyzed hydrolysis has been utilized for the
production of omega 3 PUFA concentrates®. Kahveci and Xu™ carried out the enrichment of omega 3
polyunsaturated fatty acids (PUFA) in the glyceride fraction of salmon oil by C. rugosa lipase (CRL)-catalyzed
hydrolysis. Table 3 shows some of the industrial applications of lipases.

Table3- Some of the industrial applications of lipases.

Lipase reaction Industry Product/application References
Hydrolysis of fats Detergent Removal of oil stain from [5]
fabrics
Hydrolysis of milk fat, cheese Dairy Development of flavoring [71]
ripening. agents in milk, cheese, and
butter
Hydrolysis Bakery, brewery Improvement of flavor and [72]
and food quality in beverages, meat, fish
products
Hydrolysis Leather Leather products [5]
Hydrolysis Paper Paper with improved quality [72]
Transesterification oils/fats Natural oils Cocoa butter [68]
Esterification and transesterification Flavor and Synthesis of natural flavor [73]
fragrance esters
Glycerolysis of fats/oils Surfactants Monoglycerides for surfactants | [3]
Resolution of racemic alcohols/esters Drugs and Building blocks for chiral drugs | [5]
pharmaceuticals and insecticides
Transesterification Fuel Biodiesel [74]
Acylation of sugar alcohols Surfactants Sugar monoacyl esters for | [75]
surfactants

8. Conclusion

Lipases are versatile enzymes that can be used for various kinds of biocatalyzed reactions. Owing to
their regioselectivity, their mild reactions conditions, they can be often considered as more interesting than
classical chemical catalysts. Besides their application in oils and fats processes, these enzymes have proved to
be very attractive for others lipase-catalyzed reactions with non-natural substrates. In particular they appear to
be very effective for the synthesis of molecules involving the grafting of a lipophilic moiety or a hydrophilic
one. In such reactions, various parameters and strategies can be modulated in order to improve reaction yields
and kinetics. Among these parameters, appropriate choice of reaction medium, control of water activity and
water content of the systems, nature of acyl donor, subtract ratio appear to be the keys for optimized reaction
rates and conversion yields. Recently, some new applications of lipases have been described in the field of the
modifications of natural compounds such as phenolic acids or polyphenols. These biocatalyzed reactions intend
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to modify the hydrophilic/lipophilic properties of the initial molecules to obtain new products with multi-
functional properties combining for example, microbial, antioxidant and emulsifying properties. Although the
literature on such lipase-catalyzed reactions is still scarce, it is expected to be further extended and give access
to new products and bioactive molecules. Of course, a lot of work and studies are still to be done for a potential
industrial application of such lipase-catalyzed reactions. The gap between the feasibility studies on the lab scale
and the corresponding industrial development is very large. Notably, improvements in reactions yields or
enzyme performances must be carried out. However, it appears evident that lipase applications will be more and
more extended allowing the synthesis of very specific compounds with added values in various fields of food,
pharmacy or cosmetic industry.
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