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Abstract: In this article, a three dimensional continuous time prey-predator system consisting
of susceptible prey, infected prey and predator is proposed and analysed in the presence of
intra-specific competition in predator and mortality of infected prey and predator.  We
assumed the predator preys on infected species only.  We analysed the dynamics of the
system mathematically such as, boundedness of the solutions, existence of nonnegative
equilibria, local and global stability of the interior equilibrium point by constructing suitable
Lyapunov function.  Finally we introduced the nonlinear feedback control inputs in the
system and  stabilized  the  system.   The  system appears  to  exhibit  a  chaotic  behaviour  for  a
range  of  parametric  values.   The  range  of  the  system  parameters  for  which  the  system
converge the limit cycles is determined.  Numerical simulations are carried out to support our
results.
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1.  Introduction

Mathematical models are used extensively in biology and ecology to examine population fluctuations,
spread of disease in population, erosion and the spread of pollutants and in its control, to name just a few.
Ecological systems may be extraordinarily complex-an inter-related system of plants and animals, prey,
predators, insects, parasites etc.  One important interaction, where some species use other species as their food
supply is the prey-predator interaction.  There has been growing interest in the study of three species prey-
predator system with infection in prey.  Everyone knows that the species does not exist alone in nature and any
habitat contain thousands of species.  There are possibilities of spreading of the disease in a community more
rapidly because of interaction between the species.  Hence, it is important to study the rate of transmission of
the disease and its control in biology.

       Anderson and May (1978) [1], remarked that the infectious diseases can regulate not only their host
population but also the other species their host interacts.  Anderson and May were the first who merged
ecology and epidemiology and formulated a prey-predator model where the prey species were infected by
some infectious diseases.
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       The subject of control of the dynamical system is growing rapidly in many different fields such as
ecological models, biological systems, aerospace science, structural engineering and economics [2-8].  The
nonlinear feedback controls, adaptive control, positive controls etc..  on prey-predator system has been studied
by many authors  [2-5]. Eco-epidemiological modelling provides challenges in both applied mathematics and
theoreical ecology.

Further, in recent years eco-epidemiological system with disease in prey become most interesting part
of research among all mathematical models.  Such systems governed mainly by continuous time models and
these studies investigates stability, boundedness and persistence. Krishnapada Das et.al  and Prasenjet Das et
al. [6-7] studied the prey predator system with disease in the predator population and discussed the chaos in
this system. Many authors have explored the dynamics of prey- predator system with disease in prey see for
example  [9-15].   Pierre  Auger  et  al.  studied  the  prey-  predator  system  with  disease  in  predator  [16].  The
stabilization of prey-predator system with infection or disease in prey has become great interest [12-15].  Also
the prey-predator model critically depends on the form of the functional response.  In this paper, we apply the
Holling type II functional response in the system.  Prey-predator models with Holling type II functional
response have also been studied extensively in several investigations [17-20].

           However, not much work has been dealt with stability analysis of three species continuous time models
involving intra-specific competition and mortality with nonlinear feedback controls. The interaction between
organisms or species in ecology is called competition.  Due to limited resources like food, water, space etc..,
competition between the species affect the community structure.  Intraspecific competition is a particular form
of competition in which the members of  the same species  competes for  the same resources in  an ecosystem
[21-22].

Intraspecific predation, the process of both killing and eating an individual of the same species, is a
significant and widespread process that until recently has not received the attention it merits.  It is a major
factor in the biology of many species and may influence population structure, life history, competition for
mates and resources, and behaviour.  It is commonly observed among many animals.

              In this paper, we focus our attention to observe the effects of intraspecific competition and mortality in
the prey-predator model with infection in prey of Vijaya Lakshmi et al [15].  Here, we consider the case where
the predator eats the infected prey only because the infected individuals are less active and be caught more
easily, for example, in the reference of Peterson and Page [23], they have indicated wolf attacks on moose are
more often successful if the moose is heavily infected by “Echinococcus granulosus”. We analysed the
dynamics of the system mathematically such as, boundedness of the solutions, existence of nonnegative
equilibria, local and global stability of the interior equilibrium point by constructing suitable Lyapunov
function.  Finally we introduced the nonlinear feedback control inputs in the system and stabilized the system.
The system appears to exhibit a chaotic behaviour for a range of parametric values.  The range of the system
parameters  for  which the system converge the limit  cycles  is  determined.   Numerical  simulations are carried
out to support our results.

This paper is organized as follows:  In section 2: we have given the basic model and modified it by
introducing mortality rate to infected prey, predator and competition to predator only. In section 3: we prove
for the boundedness of the non-dimensionlized model.  In section 4: we find out the existence of the
equilibrium points.  In section 5: Local stability analysis for the trivial, axial and predator free equilibrium
points  are  presented.   In  section  6:  Local  stability  analysis  for  coexistent  equilibrium point  is  presented.   In
section 7: Global stability analysis for the coexistent equilibrium point by constructing suitable Lyapunov
function is presented. In section 8: The asymptotic stability of the total system (6) with the nonlinear feedback
controls by using suitable Lyapunov function is presented. In section 9:  Numerical simulations are carried out
to support our analytical results.  Finally, the last section 10, is devoted to the conclusion and remarks.

2.  The Mathematical Model of the System

In this section, we study the dynamics of the continuous time three species prey-predator populations
in which we will use the mathematical tools and biological assumptions for modelling the three species prey-
predator system which consists of two preys and one predator.
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2.1  The Basic Model and Assumptions

In this section, we consider the three species prey-predator system which consists of two preys, namely
susceptible prey, infected prey (SI) and one predator in which prey species (SI) is infected.  And also here we
assume that the predator predates on only infected prey [9].  We assume that, the susceptible prey population
grows according to a logistic law involving the only susceptible prey species.  The transmission rate among the
susceptible prey populations and infected prey populations follows the simple law of mass action.  The disease
is spread among the prey population only and that disease is genetically inherited. The infected prey
populations do not recover or become immune. The predator population predates only the infected prey and the
functional response is of Michaelis-Menten-Holling- type II.  Such system can be described by the following
set of nonlinear differential equations:
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where

( )1X t  : the number of the susceptible prey population at time t,

( )2X t : the number of  the infected prey population at time t,

( )3X t  :the number of the predator population at time t,

r       : the growth rate of susceptible prey population,

 K     : the environmental carrying capacity,

P     : the rate of transmission from susceptible to infected prey population,

e    :  the conversion efficiency rate and

Now to formulate the modified mathematical model of a prey-predator system with disease in prey
population involving intraspecific competition in predator, we make the following assumptions:

A1. In the absence of infection and predation the susceptible prey population grow logistically with intrinsic
growth rate ( )0r > , carrying capacity ( )0K >  and then we have

1 1
1 1dX XrX

dt K
æ ö= -ç ÷
è ø

(2)

A2. In the presence of infection, the prey population is divided into two groups namely susceptible prey
denoted by ( )1X t  and infected prey denoted by ( )2X t  at all time t , the total population is

( ) ( ) ( )1 2N t X t X t= + .

A3. The disease is spread among the prey population only and the disease is not genetically inherited.  The
infected prey populations do not recover or become immune.  We assume that the disease transmission follows
the simple law of mass action ( ) ( )1 2PX t X t  with P as the transmission rate.

A4. The infected prey ( )2X t is removed by the death rate ( )1 0d > (by natural death of infected prey).
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A5. We assume that the predator population consumes only on infected prey with Michaelis Menten-Holling
functional response function:

( ) ( )2
2 3

3 2

, ,  ,  0Xf X X
X X

g
g b

gb
= >

+
(3)

That is, , is the Michaelis-Menten-Holling functional response for infected prey and it is a numerical
response for predator.  In this g   is  the total  attack rate  for  predator  or  predation coefficient  and b    is  the
handling time of predator to prey.  The coefficient in conversion prey into predator is e , where 0 1e< < .

Also we assume for the predator population:

(i) ( )  0x > be the removal rate due to intraspecific competition and

(ii) ( )2  0d >  be the removal rate due to nature death or harvesting.

Therefore the modified of the model (1) becomes:
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With initial data ( ) ( ) ( )1 2 30 0,  0 0,  0 0X X X³ ³ ³  and the coefficients 1 2,  ,  ,  ,  ,  ,  ,r K P e d dg b  and x in
model (4) are all positive constants.

2.2.  Nondimensional model

In the above model, we have specified nine parameters which makes the analysis difficult.  Now to
reduce the number of the system parameters we will transform the system (4) to the nondimensional form by

using the following transformation of the variables: 31 2
1 2 3,  ,  ,XX Xx x x t r

K K K
t

gb
= = = =

                         (5)

The modified Michaelis-Menten-Holling prey predator with vulnerable infected prey dynamics  that is,
using the transformation (5)  the system (4) takes the nondimensional form:

1
1 1 1 2

2 32
1 2 1 2

2 3

23 2 3
1 3 2 3

2 3

(1 )dx x x x x
dt

x xdx x x x b
dt x x

dx x xc x x
dt x x

k

k d

x d

= - -

= - -
+

= - -
+

(6)

where the relations between the nondimensional and dimensional parameters given by:

1 2
1 2 1,  , , ,  ,d dPK eb c

r r r r r r
g gbkxk d d x

b
= = = = = = (7)
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The system (6) is more simplicity than (7) for the mathematical study, since the number of system
parameters has been reduced from 9 to 6 only.

Now we will analyze the system (6) with the following initial conditions:

( ) ( ) ( )1 2 30 0,  0 0,  0 0x x x> > >            (8)

The conditions (8) represent the conditions of positivity or biologically feasibility of the densities of
susceptible prey, infected prey and predator populations respectively.

3.  Analysis of the Model

3.1    Existence and Dissipativeness

The model system (6) are continuous and have continuous partial derivatives on
( ){ }3 3

1 2 3 1 2 3, , :  0,  0,  0x x x R x x x+ = Î ³ ³ ³R  with interaction functions ( )1,2,3if i = .   Hence  the  solution  of  the
system (6) with non-negative initial condition exists and is unique, as the solution of the model system (6)
initiating in the non-negative octant is bounded.  And also, the system is said to be dissipative that is, all
population are uniformly limited in time by the environments, if all population initiating in 3

+R  are uniformly
limited by their environment.  The following theorem gives the dissipativeness of model system (6).

Theorem 1: All the non-negative solutions of the model system (6) that state in 3
+R  are uniformly bounded

and dissipative.

Proof:

Let ( ) ( ) ( )1 2 30 0,  0 0,  0 0x x x> > >  be any solution of the system with positive initial conditions.

Now we define the function

( ) ( ) ( )1 2 3( )t x t x t x tW = + +            (9)

Therefore, time derivative gives we get

31 2 dxdx dxd
dt dt dt dt
W
= + + (10)

   (11)

where g  = min 1 2(1, , , , , )b c g g g

Now, choose
2

1
1 2

3

x
x

x = - , we get:

( )1d
dt

g g
W

£ + - W (12)

( ) 1   ( )d say
dt

g g j
W

+ W £ + = (13)

d
dt

g j
W

+ W = (14)

Now applying the theory of differential inequality (Birkoff and Rota, 1982), we obtain

( ) ( )2 2
1 2 3 1 1 1 3      1x x x x x xg g g g x= - - - + + - +
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( ) ( )0 0 01 2 3 1 2 30 , , , , tx x x x x x e gj
g

-£W £ +W (15)

And for t ®¥ , we get

( )1 2 30 , ,x x x j
g

£ W £ (16)

Hence, all the solutions of the system (6) that initiate in 3
+R  are confined in the region B where,

( ) 3
1 2 3, , :  0 ,     0B x x x for anyj

e e
g+

ì ü
= Î £W£ + >í ý
î þ

R (17)

Which implies all species are uniformly bounded for any initial value in 3
+R .  And also according to

the above theorem we assume that their exists ( )1 2 3, , 0a a a >  such that

( ) ( ){ }
0 0 0

3
1 2 3 1 2 3 1 1 2 2 3 3, , , , :  0 ,0 ,0x x x x x x x x xa a a+W Ì = £ £ £ £ £ £� , ( )0 0 01 2 3, , 0x x x" ³ where ( )0 0 01 2 3, , 0x x xW ³

is the omega limit set of the orbit initiating at ( )0 0 01 2 3, ,x x x .  Thus the model system (6) is uniformly limited in
time by their environment.  This completes the proof.

4.     Existence of Equilibria

The existence and stability condition for the system (6) as follows:

(1) The trivial equilibrium point ( )0 0,0,0E  always exists.
(2)  The equilibrium point ( )1 1,0,0E  always exists as the prey population grows to
       the carrying capacity in the absence of predation.
(3)  In the absence of predator species the susceptible and infected prey species can
      survive.

Hence the equilibrium point ( )2 1 2, , 0E x x% %  exists in the interior of positive quadrant of 1 2x x plane,
where 1x%  and 2x%  are given as follows:

1 ,x d
k

=% 1
2 2x

k d
k
-

=% (18)

(4)  Neither 1x nor 3x can survive in the absence of infected prey species 2x , hence there is no equilibrium point
in 1 3x x  plane.  Due to the extinction scenario of susceptible prey 1x , there is no equilibrium point in 2 3x x
plane.

(5)  The positive equilibrium point ( )* * * *
1 2 3, ,E x x x exists in the interior of the first octant if and only if there is a

positive solution to the following algebraic non-linear system:
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5.    Stability Analysis of Boundary Equibria

In this section, we study the stability of the boundary equation points of the system (6).

The Variation matrix ( )1 2 3, ,V x x x   associated with model system (6) evaluated at ( )1 2 3, ,x x x  is
given by

( )1 2 3

11 12

21 22 23, ,

32 33

0

0
x x x

v v
V v v v

v v

é ù
ê ú= ê ú
ê úë û

(20)

Where
( ) ( )

( ) ( )

11 1 2 12 1

2 2
3 2

21 2 22 1 1 232 2
2 3 2 3

2 2
3 2

32 33 1 3 22 2
2 3 2 3

1 2 ;

;    ;   ;

;       2

v x x v x
x xv x v x b v b

x x x x

x xv c v c x
x x x x

k k

k k d

x d

= - - = -

= = - - = -
+ +

= = - -
+ +

Lemma 1

The trivial equilibrium point 0E  is locally asymptotically stable in the 2 3x x  direction and is unstable
otherwise.

Proof:

The  system  (6)  cannot   linearised   at 0E and therefore here we discuss the local stability of 0E with
intraspecific competition in predator.

The variation matrix ( )0V E  at the equilibrium point 0E is

( )0 1

2

1 0 0
0 0
0 0

V E d
d

é ù
ê ú= -ê ú
ê ú-ë û

           (21)

Since 2 3,l l are negative, hence 0E is asymptotically stable in the 2 3x x  direction and since 1l is positive 0E is
unstable in 1x plane.  Hence the Lemma.

Lemma 2

The boundary equilibrium point 1E  is asymptotically stable in the 1 3x x  plane and 1E is asymptotically
stable in 2x direction if the transmission rate less than the ratio of the death rate of infected prey to the carrying
capacity, otherwise unstable.

Proof:

The variation matrix ( )1V E  at the equilibrium point 1E is
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( )1 1

2

1 0
0 0
0 0

V E
k

k d
d

- -é ù
ê ú= -ê ú
ê ú-ë û

(22)

Here we easily say that 1E is locally asymptotically stable in the 1 3x x  direction and 1E is asymptotically stable

only if 1d k= , that is 1dP
k

< in 2x plane.  Hence the Lemma.

Lemma 3

The predator free equilibrium point ( )2 1 2, , 0E x x% %  exists if and only if 2 cd > , when this condition is
satisfied 1x%  and 2x%  are given follows:

1 ,x d
k

=% 1
2 2x

k d
k
-

=% (23)

 that is, ( )2 1 2, , 0E x x% % is asymptotically stable in 3x direction only if the ratio of the efficiency conversion of
predator to the death rate of predator is less than the handling time, otherwise unstable.

Proof:

The variation matrix ( )2V E  at the equilibrium point 2E is

( )

1
1

1
2

2

0

1 0

0 0

V E b

c

d
d

k
d
k

d

é ù-ê ú
ê ú
ê ú= - -ê ú
ê ú-ê ú
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(24)

The characteristic equation of ( )2V E is

( )( )2
1 2 2 0A A cl l l d+ + - + = (25)

Where 1
1  0A d

k
= >  and

2
1

2 1 - 0A d
d

k
= >

Therefore, the eigen values are

2
1 1 2

1,2

4
2

A A A
l

- ± -
=  and 3 2cl d= - , since 1 0A >  and 2  0A >  , thus the signs of the real part of 1 2,l l

are negative implies that 2E is locally asymptotically stable in the 1 2x x  -plane.

Now 2E is locally asymptotically stable in the 3x  direction only if 2 cd >  , that is
2

e
d

b< .  Hence the Lemma.
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6.  The Interior Equilibrium Point: its Existence and Stability

6.1   The Necessary and sufficient conditions for the existence of *E

Now let us we consider the existence and uniqueness of the interior equilibrium point ( )* * * *
1 2 3, ,E x x x   .

Lemma 4: Assume that (C1), (C2) and (C3) hold. That is, the equilibrium point of ( )* * * *
1 2 3, ,E x x x  of the

system (6) exists if and only if , the following two conditions are satisfied.

(C1) *
2

1x
k

<

(C2) 1 2,   0a a <

(C3) 3 4,   0a a <

Furthermore * * *
1 2 3, ,x x x  are given below:

* * * *
1 2 2 1 3 21 ;   ;x x x S x Sk= - = = , in this

22
3 3 41 1 2

1 2

44
;

2 2
S S

a a aa a a - ± -- ± -
= =  ,

* *1 1
1 3 2 31 ; bx xd d k

a a
k k

- -æ ö æ ö= - + =ç ÷ ç ÷
è ø è ø

  and

1 1 2 2
3 4 1

1 1

;S c Sx d d
a a

x x
æ ö æ ö+ -

= =ç ÷ ç ÷
è ø è ø

In terms of original parameters of the system, the conditions (C1) and (C2) respectively becomes
*

2
1x
k

< , * 1
3 1 1 ;   ;x b

d
k d

k
< - > -  and 1 1 2 20;S cx d d+ < < respectively, which are the necessary and sufficient

conditions for the co-existence of the susceptible prey, infected prey and predator.

6.2   Local stability analysis of Interior Equilibrium Point *E

The variation matrix of (3) at *E  is given below:

( )
* *

11 12
* * * *

21 22 23
* *

32 33

0

0

v v
V E v v v

v v

é ù
ê ú= ê ú
ê úë û

(26)

where
( ) ( )

( ) ( )

2 2

2 2

* * * * *
11 1 2 12 1

* *
* * * * *3 2

21 2 22 1 1 232 2* * * *
2 3 2 3

* *
* * *3 2

32 33 1 3 22 2* * * *
2 3 2 3

1 2 ;

;    ;   ;

;       2

v x x v x

x xv x v x b v b
x x x x

x xv c v c x
x x x x

k k

k k d

x d

= - - = -

= = - - = -
+ +

= = - -
+ +
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The characteristic equation is

3 2
1 2 3 0Q Q Ql l l+ + + = (27)

where ( )* * * *
1 11 22 33Q tr V E v v vé ù= - = - - -ë û

( )     ;D L= - +

* * * * * * * * * *
2 11 22 11 33 22 33 23 32 12 21Q v v v v v v v v v v= + + - -

( ) 2 * *
3 1 2 1 2DL D L y x x y yk= + + + +

( )* * * * * * * * * *
3 11 23 32 12 21 33 11 22 33detQ V E v v v v v v v v vé ù= - = + -ë û

( )2 * *
1 2 3 1 2 3D x x Ly y y yk= - + +

in this,

( ) ( )

2 2* *
* *3 2

1 2 3 1 22 2* * * *
2 3 2 3

* *
1 1 1 2 1 3 2

;   ;   1 2 ;

D= ;     L= 2 ;

x xy b y c y x x
x x x x

x y y x

k

k d x d

= = = - -
+ +

- - - -

Now

1 2 3Q Q QD = - (28)

( ) ( ) ( ) ( )
( ) ( )

2 2 2 2* * * * * * * * * * *
11 22 11 33 11 12 21 22 33 22 11

2 2* * * * * * * * * * * * *
11 22 33 22 12 21 23 32 22 33 22 33 11

* * *
23 32 33

     2

v v v v v v v v v v v

v v v v v v v v v v v v v

v v v

= - - + - -

- + + - -

+

(29)

( ) ( )( ) ( )( )( )22 * *
1 2 3 1 2 1 2  1x x D L y y y D L L D D L DL y yk= - - + - + + - + + + (30)

we discuss the local stability of their interior equation point *E .

Theorem 2:

The interior equilibrium point *E is locally asymptotically stable if and only if

  0D L+ < and   0D > (31)

Proof:

We notice that

1. 1  0      0D L Q+ < Û >
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2. 3   0Q > , for all values of the parameters, and
3. 1 2 3    0Q Q QD = - >

According to Routh Hurwitz criterion, the theorem proved.

7.  Global Stability Analysis of Interior Equilibrium Point *E

In this section, we shall study the global dynamics of the system (6) around the positive equilibrium
point ( )* * * *

1 2 3, ,E x x x  .   We construct the suitable Lyapunov  function to prove the global stability for the system
(6).

Theorem 3:

Assume that the positive equilibrium point ( )* * * *
1 2 3, ,E x x x  is locally asymptotically stable then, it is a

globally asymptotically stable in the interior of positive octant assuming the below two conditions:

(i) Choose carrying capacity and the strength of intraspecific competition rate as one.

(ii) Choose ( )2*
2 2b x x c= - +

Proof

In order to prove the global stability, we define the following Lyapunov function

( ) ( ) ( ) ( )* * * * * * * * * * * *
1 2 3 1 1 2 3 2 1 2 3 3 1 2 3, , , , + , , , ,F x x x F x x x F x x x F x x x= + (32)

where * * 1
1 1 1 1 *

1

ln xF x x x
x

æ ö
= - - ç ÷

è ø

* * 2
2 2 2 2 *

2

ln xF x x x
x

æ ö
= - - ç ÷

è ø

* * 3
3 3 3 3 *

3

ln xF x x x
x

æ ö
= - - ç ÷

è ø

Now in order to investigate the global dynamics of the non-negative equilibrium point ( )* * * *
1 2 3, ,E x x x

of the model system (6), the derivative of F with  respect  to  time  along  the  solution  of  the  system  (6)  is
computed as

31 2+ dFdF dFdF
dt dt dt dt

= + (33)

The time derivative of the above function will be

( ) 31 2
1 2 3

1 2 3

xx xF t z z z
x x x

= + +
&& && (34)

where ( ) ( ) ( )* * *
1 1 1 2 2 2 3 3 3,z x x z x x and z x x= - = - = -

Using the set of equations (6) and ( 34) we  obtain
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( ) 3 2
1 2 3 1 1 2 1 1 2 2 3 1 3 3

2 3 2 3

, , +bx cxF x x x x z x z x z z z x z
x x x x

k k x= - - + - -
+ +

&

Now choosing the condition (i) , that is 1 1k x= =  and (ii) which is given in the theorem statement,  we get

( ) ( ) ( ) ( )2 2 2* * *
1 2 3 1 1 2 2 3 3, , 0F x x x x x x x x x= - - - - - - £& (35)

Therefore ( )1 2 3, ,F x x x&  is negative definite if the above conditions of the theorem are satisfied and
consequently, F is  a  Lyapunov  function  with  respect  to  all  solutions  in  the  interior  of   the  positive  octant,
which proves the theorem.

8.  Non Linear Feedback Control

8.1  Problem Statement for Non Linear Feedback Control

Consider the chaotic system described by the dynamics

( )x Ax f x u= + +&                                                (36)

where nx RÎ is the state of the system, A is the n n´  matrix of  the system parameters,  the matrix A  have
some unknown parameters. : n nf R R®  is the nonlinear part of the system. nu RÎ is the adaptive feedback
controller.

 The global control problem is essentially to find feedback controller u , so as to stabilize the dynamics (36)
for all initial conditions (0) ,nx RÎ i.e. lim ( ) 0

t
x t

®¥
=  for all initial conditions (0) .nx RÎ

Lyapunov function methodology is used for establishing the feedback control of the system (36).

By the Lyapunov function methodology, a candidate Lyapunov function is taken as

( ) TV x x Px=                                   (37)

where P  are n n´  positive definite matrix.

Note that : n nV R R®  is  a  positive  definite  function  by  construction.  It  is  assumed  that  the
parameters of the system (36) are measurable.

If a controller u  found such that

( ) TV x x Qx= -&                                               (38)

where Q  are positive definite matrix, then V&  is a negative definite function.

Hence, by Lyapunov stability theory Hahn, (1967) [24], the dynamics (36) is globally exponentially
stable and hence the condition lim ( ) 0

t
x t

®¥
=  will be satisfied for all initial conditions (0) .nx RÎ

 Then the states of the system (36) will be globally asymptotically stable.

8.2  A Prey Predator Model With Nonlinear Feedback Controls

Theorem 4: The dynamics of the modified Michaelis-Menten-Holling  type  II prey- predator system with
predator competition involving infected prey  is asymptotically stable with the following nonlinear controls:
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2
1 1 2 1 12u x x x xk= - + (39)

2 3
2 2 3

2 3

bx xu kx x
x x

= -
+

(40)

2 2 3
3 1 3

2 3

cx xu x
x x

x= -
+

(41)

Proof:

The modified prey predator model with competition in predator involving infected prey (6) with the
nonlinear feedback controls is described by:

1
1 1 1 2 1

2 32
1 2 1 2 2

2 3

23 2 3
1 3 2 3 3

2 3

(1 )dx x x x x u
dt

x xdx x x x b u
dt x x

dx x xc x x u
dt x x

k

k d

x d

= - - +

= - - +
+

= - - +
+

                                        (42)

where 1 2 3, ,x x x  are the state variables and 1 2 1,  , , ,  ,b ck d d x  are positive parameters.

In this paper, we introduce the nonlinear feedback procedure to design the controllers 1 2 3, ,u u u , where

1 2 3, ,u u u  are feedback controllers, which is the function of the state variables. As long as these feedbacks
stabilize system (42) converge to zero as the time t goes to infinity. That means that, this gives the system  (42)
lim ( ) 0
t

x t
®¥

=

The candidate Lyapunov function is taken as

2 2 2
1 2 3 1 2 3

1 1 1( , , )
2 2 2

G x x x x x x= + +                                      (43)

Differentiating (43) along the trajectories of the system (42), the simple calculation gives

1 2 3 1 1 1 1 2 1

2 3
2 1 2 1 2 2

2 3

22 3
3 1 3 2 3 3

2 3

( , , )   ( (1 ) )G x x x x x x x x u

x xx x x x b u
x x

x xx c x x u
x x

k

k d

x d

= - - +

æ ö
+ - - +ç ÷+è ø

æ ö
+ - - +ç ÷+è ø

&

                                     (44)

Substituting equation (39),(40) and (41) into (44), then it implies that

2 2 2
1 2 3 1 1 2 2 3( , , )G x x x x x xd d= - - -&                                                  (45)

which is a negative definite function.

Thus by Lyapunov stability theory [33], the modified Michaelis-Menten-Holling prey predator with
competition and mortality in predator involving infection and mortality in prey dynamics (6) is asymptotically
stable.
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9.  Numerical Simulation

We perform the numerical simulations of systems (6) and (42) with the following set of parameters and
explaining their complex dynamical nature.  The phase portraits and the corresponding time series graph are
obtained  for  the  systems  (6)  and  (42).   We  have  fixed  the  parameter

1 2 10.9; 1.5;  0.4;  0.4;  0.2b c d d x= = = = = and the initial densities 1 2 3  0.9;  0.8;  0.7;x x x= = =

Figure 1 : Time series of the trajectory of the system (6) approaches asymptotically to (0.2716, 0.4137,
0.4293) for 3k =

Figure 2: Phase portrait when 3k =  for the system (42) approaches asymptotically to the point
 (0.2716, 0.4137, 0.4293)

Figure 3: Time series of the trajectory of the system (6) approaches asymptotically to
(0.5854,0.2438,0.4689) for 1.8k =
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Figure 4 : Phase portrait when 1.8k =  for the system (42) approaches asymptotically to the point
 (0.5854,0.2438,0.4689)

Figure 5 : Time series of the trajectory of the system (6) approaches asymptotically to (0.8174,
0.1515,0.3081) for 1.25k =

Figure 6 : Phase portrait when 1.25k =  for the system (42) approaches asymptotically to the point
(0.8174, 0.1515,0.3081)
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Figure  7  :  Time  series  of  the  trajectory  of  the  system  (42)  approaches  asymptotically  to
(0.0022,0.0305,0.0635) for 1.25k =

Figure 8 : Phase portrait when 1.25k =  for the system (42)

     In the above numerical simulations, we keep the parameters
1 2 10.9; 1.5;  0.4;  0.4;  0.2b c d d x= = = = = fixed with the initial densities

1 2 3  0.9;  0.8;  0.7;x x x= = = and just varying the disease transmission rate k  . The figure 1, shows the
population variation when 3k =  approaches the stable point (0.2716, 0.4137, 0.4293) and figure 2 gives the
corresponding phase plot.  Now in figure3, we observe, when the disease transmission rate is decreased
to 1.8k = , the density of infected prey also decreased to 0.4137 to 0.2438 and the density of susceptible prey
increased from 0.2716 to 0.5854. Figure 4 gives the corresponding phase plot.

      When the disease transmission rate again decreased to 1.25k = , in figure 5,  we easily observe
that the densities of infected prey and predator decreased and there is a increase in the density of susceptible
prey. Figure 6 gives the corresponding phase plot.

In Figure 7 , the population densities approaches the stable point (0.0022,0.0305,0.0635) quickly for
the system (42) with nonlinear feedback controls for the same parameters which is mentioned above for any
one of the disease transmission values 3k = 1.8k = 1.25k = .

      The above numerical simulations show the dynamic effect of the disease for the prey-predator system.  The
comparative analysis, that is, the figures between uncontrolled (6) and controlled system (42) proves our
analytical results.

10. Conclusion

In this paper, we have considered the three species prey-predator system consists of susceptible,
infected prey and predator involving mortality in both species. In this we have introduced intraspecific
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competition for the predator at the rate of 1x and also the mortality rates 1d and 2d for  the infected prey and
predator respectively.   Incorporating the mortality in infected prey and predator , intraspecific competition in
predator in the system (6) provides a more realistic model.  An intraspecific competition and mortality can be
important for the biological control of prey-predator population, however, increasing the amount of
competition of predators can increase prey densities and lead to population outbreaks.  The non-
dimensionalised system (6) is uniformly bounded, which implies that the system is biologically well behaved is
shown in theorem 1.  Although, most of the prey-predator models with prey infection we observe in nature
correspond to stable equilibria of the models, we have presented the trivial, boundary, predator free and coaxial
equilibrium points.  The stable criteria given in Lemma 1,2 and 3 are the conditions for the asymptotic stability
of the equilibrium points 0 1,E E and 2E .  Now we observed that the predator fee equilibrium 2E exists  if  and

only if e
d

b< , which implies that if the ratio of the efficiency conversion of predator to the death rate of

predator is less than the handling time, then the predator becomes extinct and conversely.

The stable criteria given in Lemma 4 and Theorem 2 are the conditions for the asymptotic stable
coexistence of the susceptible prey, infected prey and predator population *E .  Now we observe that the interior

equilibrium point *E exists if the conditions 1
* *

2 2

1 ;
1

b
x x

d
k k

+
< <

-
and 2 1 2 20;S cd x d+ < <  are satisfied and also

we have show *E  is asymptotically stable under Routh Hurwitz criterion.  The global stability analysis of the
coaxial equilibrium point has been presented in the Theorem 3 by constructing the necessary Lyapunov
function.

       Next the problem of nonlinear feedback control of three species consisting of susceptible prey, infected
prey and predator is studied.  The asymptotic stability of the controlled system is proved by using suitable
Lyapunov function.  The necessary control inputs for stabilization is obtained as nonlinear feedback.  Finally,
extensive numerical examples and simulations are presented by using MATLAB software which supports our
results.  The numerical simulation were designed to observe the effect of the disease on the three species and it
was found that if the contact rate between susceptible prey and infected prey  decreased the density of
susceptible prey increased and at the same time density of predator decreased, which proves our result.

References

1. Roy M. Anderson and Robert M. May, “Regulation and stability of host-parasite population
interactions: I. Regulatory processes”, Journal of animal ecology,1978, vol.47, No.1, 219-247.

2. Al-Ruzaiza. A.S, “The chaos and control of prey-predator model with some unknown parameter”,
Applied Mathematical Sciences, 2009, Vol.3, No.28, 1361-1374.

3. Amit Bhaya and Magno Enrique Mendoza Meza, “Control of nonlinear dynamic models of predator-
prey type”, Oecologiu Australis, 2012, Vol.16(1), 81-98.

4. Awad El-Gohary and Al-Ruzeiza. A.S, “Chaos and adaptive control in two prey, one predator system
with nonlinear feedback”, Chaos, Solitons and Fractals, 2004, Vol.34, 443-453.

5. Frederic Grognard, Jonathan Rault and Jean-Luc Gouze, “Positive control for global stabilization of
predator-prey systems”, 9th IFAC sysmposium on nonlinear control systems, Toulouse, France, 2013,
4-6.

6. Krishnapada Das, Sudip Samanta, Barasha Biswas, Joydev Chottapadhyay, “Occurrence of chaos and
its possible control in a predator-prey model with disease in the predator population”, The Journal of
Ecology, 2014, Vol.108, 306-319.

7. Prasenjet  Das,  Dehasis  Mukherjee,  Kalyan  Das,  “Chaos  in  a  prey-predator  model  with  infection  in
predator- A parameter domain analysis”, Computational and mathematical biology, 2014, Vol.4, Issue
3, 1-12.

8. Sundarapandian, V., Suresh, R.,  “Hybrid synchronization of Arneodo and Rossler chaotic systems by
active nonlinear control,” CCSIT 2012, Part-I, LNICST Springer  Heldelberg, Dordrecht, London,
Newyork,  2012,Vol.84, 257–266  .

9. Athul Johri, Neethu Trivedi, Anjali Sisodiya, Bijendra sing and Suman Jain, “Study  of      a  prey-
predator model with diseased prey”, Int.J. Contemp. Math. Sciences, 2012, Vol.7, No.1, .489-498.



Suresh Rasappan et al /Int.J. PharmTech Res. 2015,8(9),pp 180-197. 197

10. Herbert W. Hethcote, Wendi Wang, Litao Han, Zhien Ma, “A predator-prey model with infected
prey”, Theoretical Population Biology, 2004, Vol. 66, 259-269.

11. Wuhaib. S.A and Abu Husan .Y,  “A predator infected prey model with harvesting of infected prey”,
Research Article: ScienceAsia 2013, Vol.395, 37-41.

12. Wuhaid. S.A and Abu Hasan. Y, “A prey predator model with vulnerable infected prey” Applied
Mathematical Sciences, 2012, Vol.6, No.107, 5333-5348.

13. Yanni Xiao, Lansun Chen, “A ratio-dependent predator-prey model with disease in the prey”, Applied
Mathematics and Computation, 2002, Vol.131,397-414.

14. Yanni Xiao, Lansun Chen, “Modeling and analysis of a predator-prey model with disease in prey”,
Mathematical Biosciences, 2001, Vol.171, 59-82.

15. Vijaya Lakshmi Gandhavadi Mohan Rao, Suresh Rasappan, Regan Murugesan and Vijaya Srinivasa,
“A prey predator model with vulnerable infected prey consisting of non-linear feedback”, Applied
Mathematical Sciences, 2015, Vol.9, No.42, 2091-2102.

16. Pierre Auger, Rachid Mchich, Tanmay Chwodhury, Gauthier Sallet, Maurice  Tchuente, Joydev
Chattopadhyay,  “Effects of disease affecting a predator on the  dynamics of a predator-prey system”,
Journal of theoretical biology, 2009, Vol.258,  344-351.

17. Agiza. H.N, Elabbasy. E.M, EK-Metwally,Elsadany. A.A, “Chaotic dynamics of a discrete prey-
predator model with Holling type II”, Nonlinear analysis: Real world applications , 2009, Vol.10, 116-
129.

18. Aziz-Alaoui. M.A and Daher Okiye. M, “Boundedness and global stability for a predator-prey model
with modified Leslie-gower and Holling-type II schemes”, 2003, Vol.16 , 1069-1075.

19. Shanshan chen, Junping shi, Junjie wei,  “The effect of delay on a diffusive predator-prey system with
Holling type-II predator functional response”, Communications on pure and applied analysis, 2013,
Vol.12, No.1, 481-501.

20. Shuwen zhang, Lansun chen, “A Holling II functional response food chain model with impulsive
perturbation”, Chaos, solitons and fractals, 2005,  Vol.24,  1269-1278.

21. Arditi. R, Abillon. J.M, Viieira Da Silva, “A predator-prey model with satiation and intraspecific
competition”, Ecological Modelling, 1978, Vol.1 (issue 3), 173-191, 1978.

22. Thomas W. Schoener, “Population growth regulated by intraspecific competition for energy or time:
Some simple representations”, Theoretical Population Biology, 1973, Vol.4 (issue 1) , 56-84.

23. Peterson. R.O, Page. R.E., “Wolf density as a predator of predation rate”, Swedish wild life research,
Suppl. 1, 1987.

24. Hahn.W,  “The Stability of Motion, Berlin, Germany”, Springer-Verlag, 1967.

*****


