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Abstract: In  the  recent  decades,  there  is  significant  interest  in  the  literature  in  the
application of chaos in physical, electrical, chemical and biological systems.  This paper
investigates research in the dynamic analysis and global chaos synchronization of enzymes-
substrate reactions system with ferroelectric behaviour in brain waves which was studied by
Enjieu Kadji, Chabi Orou, Yamapi and Woafo (2007). The enzymes-substrates system is a 2-D
non-autonomous system with a cosinusoidal forcing term. This paper depicts the phase portraits
of the 2-D enzymes-substrates system when the system undergoes chaotic behaviour. Next, this
paper derives new adaptive control results for globally synchronizing the identical enzyme-
substrates systems with uncertain parameters. Backstepping control is used to derive the main
results for global synchronization of the enzyme-substrates systems.  MATLAB plots have been
shown in this paper to illustrate the main results for the enzyme-substrates system.
Keywords: Chaos, enzymes-substrate reactions, biology, synchronization, backstepping
control, etc.

Introduction

Chaos theory is a modern research field which discusses the qualitative and numerical study of
unstable aperiodic behaviour in deterministic nonlinear dynamical systems. A dynamical system is called
chaotic if it satisfies the three properties: boundedness, infinite recurrence and sensitive dependence on initial
conditions [1-2].

The first famous chaotic system was discovered by Lorenz, when he was developing a 3-D weather
model for atmospheric convection in 1963 [3], and subsequently, Rössler discovered a 3-D chaotic system in
1976 [4]. The discovery of Lorenz and Rössler chaotic systems has ben followed by the discovery of many 3-D
chaotic  systems such as  Arneodo system [5],  Sprott  systems [6],  Chen system [7],   Lü-Chen system [8], Cai
system [9], Tigan system [10], etc. Many new chaotic systems have been also discovered in the recent years
like Sundarapandian systems [11, 12], Vaidyanathan systems [13-37], Pehlivan system [38], Pham system [39],
etc.

 Coherent oscillations in biological systems are studied by Frohlich [40] and the following suggestions
were made which are taken as a physical basis for theoretical investigation of enzymatic substrate reaction with
ferroelectric behaviour in brain waves model [41].

1. When metabolic energy is available, long-wavelength electric vibrations are very strongly and
coherently excited in active biological system.

2. Biological systems have metastable states with a very high electric polarization.

These long range interactions may lead to a selective transport of enzymes, and hence specific
chemical reactions may become possible. Enjieu Kadji, Chabi Orou, Yamapi and Woafo (2007) derived
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enzymes-substrates reactions system with ferroelectric behaviour in brain waves [42]. Specifically, chaotic
behaviour was noted for the 2-D enzyme-substrate reactions system. This paper discusses the chaotic properties
of the enzyme-substrates reactions system, and MATLAB plots are shown for the phase portraits of the chaotic
system.

Chaos and control theory have a manifold variety of applications in many fields of science and
engineering such as oscillators [43], memristors [44-45], biology [46], chemical reactions [47-48],  circuits [49-
50],   etc.  Recently,  there  is  significant  result  in  the  chaos  literature  in  the  synchronization  of  physical  and
chemical systems. A pair of systems called master and slave systems are considered for the synchronization
process and the design goal is to device a feedback control mechanism so that the trajectories of the slave
system asymptotically track the trajectories of the master system. Numerous effective methods have been
designed for the synchronization of chaotic systems such as active control [51-60], adaptive control [61-74],
sliding mode control [75-82], backstepping control [83-89], etc.

This paper also derives new results of adaptive backstepping controller design for the global chaos
synchronization of enzymes-substrate systems, which are established using Lyapunov stability theory [90].

Enzymes-Substrates Reaction System

Enjieu Kadji, Chabi Orou, Yamapi and Woafo derived enzyme-substrate reactions system with
ferroelectric behaviour in brain waves [29], which is given by the differential equation

( )2 4 61 cos( )x x ax bx x x E tm w- - + - + =&& & (1)

In (1), ,a b  are positive parameters, m  is the parameter of nonlinearity, while E  and w  are  the
amplitude and the frequency of the external cosinusoidal excitation, respectively.

The enzymes-substrates reaction system (1) can be compactly put in system form as
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For the external excitation, we take the constants as
8.27,  3.465E w= = (3)

The biological system (2) is chaotic when the system parameters are chosen as
2.55,  1.70,  2.001a b m= = = (4)

For numerical simulations, we take the initial conditions (0) 0.1x =  and (0) 0.1.y =

The 2-D phase portrait of the enzymes-substrates biological reaction system is depicted in Fig. 1.

Figure 1. The 2-D phase portrait of the enzymes-substrates biological reaction system
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Adaptive Chaos Synchronization of the Enzymes-Substrates Reaction Systems

In this section, we design an adaptive backstepping feedback control law for globally synchronizing the
enzymes-substrates reaction system with uncertain parameters a  and .b  It is supposed that the constants E
and w  associated with the external excitation ( ) cos( )f t E tw=  are maintained at the constant values given in
equation (3). It is also supposed that the nonlinear parameter  is maintained at the constant value given in
equation (4).

As the master system, we consider the controlled enzymes-substrates reaction system given by

( )
1 1

2 4 6
1 1 1 1 1 11 cos( )

x y

y x ax bx y x E tm w

=ìï
í = - + - - +ïî

&

&
(5)

As the slave system, we consider the controlled enzymes-substrates reaction system given by

( )
2 2

2 4 6
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Now, we define the complete synchronization errors as

2 1
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Then the error dynamics is obtained as
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Now, we define the parameter estimation errors as
ˆ( )
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Differentiating (9) with respect to  we get
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Theorem 1. The enzymes-substrates reaction systems (5) and (6) with uncertain system parameters  and is
globally and exponentially stabilized for all initial conditions by the adaptive control law

( ) ( ) ( ) ( )2 2 4 4 6 6
2 2 1 1 2 2 1 1 2 2 1 1 2

ˆˆ2 1 1 ( ) ( )x yu e e y x y x a t x y x y b t x y x y kzm m m m= - - - - + - - - + - -  (11)

where  is a gain constant,

2 ,x yz e e= + (12)
and the update law for the parameter updates  is given by
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Proof. We prove this result by applying backstepping control and Lyapunov stability theory.

First, we define a quadratic Lyapunov function

2
1 1 1

1( ) ,
2

V z z= (14)

1 xz e= (15)
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Differentiating  along the dynamics (12), we get
2

1 1 1 1 1( )x yV z z z z e e= =- + +& & (16)
Now, we define

2 x yz e e= + (17)
Substituting (17) into (16), we obtain
2

1 1 1 2V z z z= - +& (18)
Next, we define a quadratic Lyapunov function

2 2
2 1 2 1 1

1 1( , , , ) ( ) ,
2 2a b a bV z z e e V z e e= + + (19)

which is positive definite on 4.R
Differentiating (19) along the dynamics (8) and (10), we get
2 2

2 1 2 2
ˆˆa bV z z z S e a e b= - - + - - &&& (20)

where
1 2 2S z z z= + + & (21)

A simple calculation gives

( ) ( ) ( ) ( )2 2 4 4 6 6
2 2 1 1 2 2 1 1 2 2 1 12 1 1x yS e e y x y x a x y x y b x y x y um m m m= + + - - - + - - - + (22)

Substituting the feedback control law (11) into (22), we obtain

( ) ( )4 4 6 6
2 2 1 1 2 2 1 1 2

ˆˆ[ ( )] ( )S a a t x y x y b b t x y x y kzm mé ù= - - - - - -ë û (23)

Using (9), the equation (23) can be simplified as

( ) ( )4 4 6 6
2 2 1 1 2 2 1 1 2a bS e x y x y e x y x y kzm m= - - - - (24)

Substituting the value of  from (24) into (20), we get

( ) ( )2 2 4 4 6 6
2 1 2 2 2 2 1 1 2 2 2 1 1

ˆˆ(1 ) a bV z k z e z x y x y a e z x y x y bm mé ùé ù= - - + + - - + - - -ë û ê úë û
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Substituting the parameter update law (13) into (25), we get
2 2

2 1 2(1 )V z k z= - - +& (26)

which is  a negative semi-definite function on 4.R

By Barbalat’s lemma in Lyapunov stability theory [90], it follows that the states ( ), ( )x t y t
exponentially converge to zero as t ®¥ for all initial conditions.

This completes the proof. n

Numerical Simulations

We use classical fourth-order Runge-Kutta method in MATLAB with step-size 810h -= for solving the
systems of differential equations given by (5) and (10), when the backstepping control law (8) is applied.

We take the gain constant as 20.k =  We  take  the  initial  conditions  of  the  master  system  (5)  as

1(0) 0.4x =  and 1(0) 2.5.y =  We  take  the  initial  conditions  of  the  slave  system  (6)  as 2 (0) 3.1x =
and 2 (0) 1.2.y =

The parameter values are taken as in (3) and (4) for the chaotic case, viz.
8.27,  3.465,  2.55,  1.70,  2.001E a bw m= = = = =

Also, we take ˆ(0) 1.8a =  and ˆ(0) 2.4.b =

Figs. 2-3 show the complete synchronization of the enzymes-substrates reaction systems (5) and (6).
Fig. 4 shows the time-history of the chaos synchronization errors , .x ye e  From  Fig.  4,  it  is  clear  that  the
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synchronization errors converge exponentially as time gets large.

Figure 2.  Complete synchronization of the states 1 2( ), ( )x t x t

Figure 3.  Complete synchronization of the states 1 2( ), ( )y t y t

Figure 4. Time-history of the chaos synchronization errors ( ), ( )x ye t e t
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Conclusions

In this paper, new results have been derived for the enzymes-substrates reaction with ferroelectric behaviour
in brain waves discovered by Enjieu Kadji, Chabi Orou, Yamapi and Woafo (2007). This paper presented adetailed
description and dynamic analysis of the chaotic 2-D non-autonomous attractor describing the enzymes-substrates
reaction system. Then this paper presented new results for the adaptive chaos synchronization of the identical
enzymes-substrates reaction systems with uncertain parameters. The main results have been proved using
backstepping control and Lyapunov stability theory. Also, numerical simulations using MATLAB were shown to
elucidate the main results.
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