
International Journal of ChemTech Research
                                                                  CODEN (USA): IJCRGG       ISSN: 0974-4290

                                                            Vol.8, No.7, pp  140-145, 2015

Optimization of tubelength in TiO2 nanotube – a
computational approach

S.HarshaVarthan1, V. Saravanakannan2, R. Chandiramouli2

1School of Mechanical Engineering, SASTRA University, Tirumalaisamudram,
Thanjavur -613 401, India

1School of Electrical & Electronics Engineering, SASTRA University,
Tirumalaisamudram, Thanjavur -613 401, India

Abstract: In the present work, TiO2 nanotube length is optimized using artificial neural
network. The length of TiO2 nanotube can be varied with the parameters such as applied
voltage and anodization time inanodization of Ti foil method. Various range of tube length
from 0.400 -10.998μm can be grown when voltage is kept at 10V and the anodization time is
adjusted from 1 - 45 hours. The tube length of 0.400-11μm can be synthesized, when the
voltage is kept at 20 V and the anodization time is adjusted from 1 -70 hours. The computed
results of the tube length are found to be in close agreement with the experimental results
with an error of 0.00403. The optimization process of TiO2 nanotube length reduces the strain
and effort of researchers while synthesizing TiO2 nanotubes.
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1. Introduction

Transition  metal  oxides  (TMO)  are  mainly  used  as  chemical  sensors,  catalyst  and  in  solar  cells.  One
among the transition metal oxides is titanium oxide (TiO2).TiO2 exhibits three polymorphism namely, rutile,
anatase and brookite phase. TiO2naturally occurs as a rutile in some acid igneous rocks and metamorphic rocks
and is also in sedimentary rocks &beach sands. The metastable anatase and brookite phases convert irreversibly
to the equilibrium rutile phase upon heating above temperatures in the range 600°-800°C.TiO2 have tremendous
applications in various fields such as in photo catalytic applications [1], gas sensing [2], photo electrolysis [ 3],
polymer based bulk heterogeneous photovoltaics [4],  energy storage devices such as Li – ion batteries and
super capacitor [5]. 1-D nanowire and nanotube of TiO2 with high surface to volume ratio possess significant
useful and unique properties. Moreover, the morphology of TiO2 nanostructures gives rise to numerous
applications. TiO2 can be synthesized by many methods such as sol gel transcription process using organo
gelato templates [6], pulsed laser deposition[7], hydrothermal techniques [8] andanodization of titanium in fluid
based electrolyte leads to controlled dimension of nanotube synthesis [9].The thickness of TiO2nanostructures
plays an important role in deciding different properties such as physical, chemical, electrical and mechanical
properties. Meiling et al synthesized TiO2 nanotubes by anodic oxidation and electro deposition
methods[10].Pei et al prepared TiO2 nanotubes by a hydrothermal method [11]. Tang et al synthesized TiO2
nanotubes by anodization of Ti films at room temperature[12].Yuren et al reported the synthesis of TiO2
nanotubes using a hybrid synthetic strategy [13]. Cui synthesized TiO2 nanotubes by facile microwave-assisted
hydrothermal method [14].

The artificial neural network (ANN) find its applications in time series prediction [15], fitness
approximation [16], robotics [17], control including computer numerical control [18], generation of
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conductivity map on the ground [19], reliability analysis of steel structures [20] and thermal analysis of heat
exchangers [21].The motivation behind the present work is to fine-tune the nanotube dimension of TiO2 using
the artificial neural network and to optimize the nanotube length during. From the literature survey, it is known
that not much work is done to optimize TiO2 nanotube dimension using ANN. In the present work, the nanotube
anodization of Ti sheetslength of TiO2 is optimized using ANN and the results are reported.

2. Computational details

The success of the artificial neural network depends on their architecture, learning algorithm, which is
used in the transfer function and the number of neurons. In this present work, back propagation  algorithm
(BPA)neural networkis used to estimate the length of TiO2. A simple architecture of neural network is shown in
Figure 1, which has two input neurons in the input layer, three neurons in the hidden layer and two neurons in
the output layer. Usually BPA is a supervised learning algorithm, which reduces over all systems to minimum
and it uses the sigmoid activation function f(x)=1/1+e-x.Usually during the learning or training process, an
interconnection between the input, hidden and output layers are established. This interconnection between the
layers enables the signal transfer between the layers. The intensity of the signals can be determined with the
help of the weights of the corresponding signals. This can be done by iteratively changing the weights of the
corresponding signals between the neurons and the sum of the squared errors between the calculated weights
and expected weights can be minimized by the model selected.

During the learning process, the initial weight vectors W0 are updated using the following equation,

Wi(k+1)=Wi(k)+μ(Ti-Oi)f’(Wixi)xi

where Wi is the weight matrix associated with ith neuron , xi is the input of ith neuron,Oi is the actual output of
the ith neuron, Ti is the target output of the ithneuron and μ is the learning rate parameter.

Fig. 1 Basic Neural Network Model

In the present work, the data obtained from the experiments [22] are given as input. The modelled
network consists of two input nodes with voltage between the electrodes and the anodization time as inputs.
Finally the result of the tube length is obtained when the voltage between the electrodes and the anodization
time is given as input. For the number of training cycles being 1.82 x 109, the mean error obtained is 0.000403.
Thecycle learning rate is 0.6000 with the momentum of 0.8000.After the running cycles for several time with
voltage being 10,20 and 25 V,wide range of tube length are calculated.

3.  Results and discussion

Usually in anodization of Ti foils, titanium anode and a platinum cathode is immersed in an aqueous
electrolyte of dilute acid to which a small dc voltage is applied. The surface layer is sufficiently resistive to
prevent current flow. Electrolyte composition also primarily decides whether the oxide film is porous or it
forms a barrier.Initially, pits are formed on the TiO2 layer, then poresstarts growingto form the ordered
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nanotube arrays in the substrate. On anodization, the pore growth takes place, after certain time dissolution
occurs along the inter pore region,finally ordered nanotube arrays are formed.It is observed that TiO2nanotube
structure is grown on increasing the voltage beyond 23V and by adding 0.5% hydrofluoric acid electrolyte in a
ratio of 1:7,mechanically strongernanotubes can be synthesized.Fig. 2 represents the anodization process of Ti
foils to form TiO2 nanotubes.The input data are given from the reported work and the optimization of TiO2
nanotube are calculated using ANN [22]. Finally querying rows has been added for testimony of the artificial
neural network and the errorsare minimized as stated above and the data are verified.

Fig. 2 Anodization of Ti foils to form TiO2 nanotubes

Training process

The result obtained from the experiment[22] is used in the growing the network.The voltage and
anodization time are given as the input in the two input nodes and the tube length is obtained as output. Fig. 3
illustrates the reported TiO2 nanotubes synthesized at different voltage for various time duration.

Fig. 3 Reported TiO2 nanotubes synthesized at different voltage -ref [22]

Testing process

After training the back propagation neural network with the data obtained from the anodization
experiment, test rows are generated, then the correctness of the neural network is tested by giving input and the
training ANN once again. The resultsobtained have error of 0.000403 and the correctness of the results are
validated as in Fig. 4.
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Fig. 4 Training data set given for the neural network

Optimization of TiO2 tube length

Thirty three data have been generated by keeping 10V as input voltage and varying anodization time,
thirty four data have been generated keeping 20V as input voltage and varying anodization time, thirty three
data have been generated keeping 25V as input voltage and varying anodization time.Fig. 5 represents the
growth process of TiO2 nanotubes. Various range of tube length from 0.400 -10.998μm is observed when
voltage is kept at 10V and the anodization time is adjusted from 1-45 hours.The tube length of 0.400-11μm can
be grown, when the voltage is kept at 20 V and the anodization time is adjusted from 1 -70 hours.When the
voltage is kept at 25 V, 4.5 -6.4 μm can be synthesized. From the results, it is inferred that for anodization time
of 24-70 hours, tube length of 4.500 -6.400 μm can be synthesized.Fig. 6 illustrates the optimized growth
prediction of TiO2 nanotube length for various voltages. Moreover, the higher conductivity of electrolyte is the
influencing factor for the growth of TiO2 nanotubes. Initially, the growth of TiO2 nanotube increases. However,
for the time period of 10 hours to 20 hours, the chemical etching leads to improved conductivity of electrolyte
[22]. Meanwhile, the top debris results in the breakage of nanotube length, which gives rise to decrease in the
tube length for higher voltages as shown in the Fig. 6.The importance of the present work is a wide range of
results can be generated, which is hard to obtain experimentally and is also time consuming process.

Fig. 5. Growth process of TiO2 nanotubes

From the above results it is clear that by varying the voltage and anodization time TiO2 nanotubes of
different  lengths  ranging  from  0.4  to  11  µm  can  be  obtained  and  the  parameter  for  different  length  can  be
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obtained using ANN. Although many methods of diagnosis have been reported, the preparation of
TiO2nanotubes by anodization in electrolytic solution have proven to be one of the efficient method.
Furthermore, incorporating the experimental results with the artificial neural network gives the accurate and
optimized result. Besides, the work proves that it is legitimate to use artificial neural network in obtaining the
results.

Fig. 6. Optimized growth prediction of TiO2 nanotube length for various voltages

5. Conclusion

In summary, the tube length of TiO2 nanotubes is optimized using ANN. Even though there are number
of experimental procedures to synthesis TiO2 nanotube of various sizes, researchers still find it difficult to
adjust the parameters to obtain the desired length of TiO2 nanotube. Moreover, ANN is a reliable method to
optimize TiO2 nanotube tubelength by feeding the experimental data and generating the tubelength without
going for the tedious experimental methods. In the present work, an attempt has been made to optimize the tube
length  of  TiO2 nanotubes. The desired tubelength of TiO2 nanotubes can be obtained byanodization method
using this approach. It also reduces the strain and effort of the researchers for obtaining the correct parameters
to get the desired TiO2 nanotube length.
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