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Abstract: Experiments were carried out on heat transfer between hot water and various two-

phase liquid mixtures in a custom-built 1-2 shell and tube heat exchanger. The two-phase 

liquid systems were chosen to represent wide range of thermo-physical & transport 

properties. The influence of mass flow rate of hot fluid & two-phase liquid mixture, 

composition of two-phase liquid mixture, flow geometry (shell side) on thermal effectiveness 

of two-phase liquid mixture were comprehensively studied in laminar flow regime. The 

experimental data was statistically analyzed to develop correlations for thermal effectiveness 

of two-phase liquid mixture on shell side. The developed correlations predict thermal 

effectiveness of two-phase liquid mixture with a maximum error of ±13 % for 245 data points 

covering 7 different two-phase liquid systems. 

Keywords : Two-phase liquid mixture, heat transfer, thermal effectiveness, correlation, 

Reynolds number, heat capacity ratio. 
 

1. Introduction 

Many industrial applications involve heat transfer in various multiphase systems viz., gas-solid, liquid-

liquid and gas-solid. Heat transfer in fluidized beds [1], pneumatic conveying preheating & drying systems [2-

7], cyclone heat exchanger [8], flow boiling [9], etc. are some of the examples. Heat transfer in liquid-liquid 

two-phase systems is widely prevalent in petrochemical industries [10]. The presence of one liquid along with 

other liquid forming two-immiscible phases with different thermo-physical properties changes momentum and 

heat transfer characteristics. Hence the understanding of heat transfer in such two-phase systems is essential, 

which can be utilized for design and analysis of heat transfer equipment.  

              A survey of literature on the gas-liquid systems shows that considerable research has been carried out 

on the dynamics and heat transfer of two-phase flow [11 - 26]. Chisholm and Laird [27] developed the general 

correlation between the Lockhart-Martinelli parameter and the two–phase multiplier for pressure drop first time 

on liquid-liquid two phase flow in circular tube. Similar kind of studies have been carried out on liquid–liquid 

systems in various geometries such as horizontal piping [28 - 30], microchannels [31 - 34], horizontal and 

annular piping [35 - 38], inclined pipe [39, 40]. Heat transfer studies on liquid-liquid systems have also been 

investigated in many heat exchange equipments such as compact heat exchanger [41] and shell and tube heat 

exchanger [42 - 46]. 

Thermal effectiveness is one of the means to assess the performance of a heat exchanger.  In a plant 

heat exchanger, it is essential to know the exit temperature of hot and cold stream leaving the heat exchanger. 

Heat transfer coefficient calculated from fluid velocity and transport properties is widely used to determine heat 

transfer rate from which exit temperature can be calculated. However, a direct correlation between exit 

temperature of streams and thermo physical properties & fluid velocity, in terms of dimensionless numbers will 

be useful for easy prediction of stream temperatures. This paper reports the development of a correlation for 
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thermal effectiveness for the instance of heat transfer between a single phase stream and a two-phase stream for 

a reasonably wide variety of liquids constituting two phases. 

2. Experimental 

The 1-2 pass shell and tube heat exchanger used for heat transfer experiments is described in our earlier 

work [42 - 46] and a schematic diagram is shown in Figure 1. Heat transfer area of 0.2269 m
2
 was obtained by 

arranging 14 tubes (0.01 m ID & 0.012 m OD) in triangular pitch. Each tube is 0.43 m long. The hot and cold 

fluids (hot water and two-phase liquid mixtures respectively) were pumped to the heat exchanger using 1/4 HP 

pumps, with flow rates measured using calibrated rotameters of accuracy ±0.1 LPM. Flow rates of hot and cold 

streams were adjusted using hand operated valves. A thermostat (accuracy ~±0.5
o
C) was used to maintain the 

temperature of hot fluid (hot water). An agitator was used to ensure constant mixing of two fluids (in two-phase 

stream) in the reservoir.  Seven liquid-water systems viz. Kerosene-water, Diesel-water, Nitro benzene-water, 

Oleic acid-water, Palm oil-water, Octane-water and Dodecane-water in varying proportions were used for 

experiments. This experimental design yielded 7 two-phase systems with 4 compositions each leading to 28 

different two-phase mixtures. The range of variables investigated is given in Table 1. The range of thermo-

physical & transport properties of various pure liquids used for formulation of two-phase, liquid-liquid systems 

are given in Table 2. 

 

Figure 1: A schematic diagram of the experimental set-up 

Table 1: Range of variables investigated 

S.no Variables Values 

1 Composition of two-phase systems             

(as volume percentage of organic phase) 

20%, 40%, 60%, 80% and 100% 

2 Mass flow rate of cold fluid 0.0088 kg/s to 0.2412 kg/s (shell side) 

0.0043 kg/s to 0.1062 kg/s (tube side) 
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Table 2: Range of properties of two-phase systems investigated 

 

 

 

 

3. Results & Discussion 

3.1.  Effect of Reynolds number on thermal effectiveness of process fluid  

Figure 2 shows the effect of Reynolds number on thermal effectiveness of process stream, when it was 

supplied through the shell-side. Figure 2 has been drawn for different compositions of kerosene-water system as 

the process stream. It is observed from Figure 2 that the thermal effectiveness of process stream decreases with 

increase in its Reynolds number. For a process stream of fixed composition, higher Reynolds number indicates 

higher velocity and hence higher mass flow rate of process stream. Though heat transfer coefficient is expected 

to increase with velocity of process stream, the higher heat capacity (product of mass flow rate and specific 

heat) of process stream leads to reduction in its temperature rise. Hence thermal effectiveness of process fluid 

decreases with increase in Reynolds number.  

The thermal effectiveness of 100 % water as process stream is higher than that of 100 % kerosene as 

process stream for the same Reynolds number. The thermal effectiveness for two-phase process streams lies 

between the thermal effectiveness of 100 % water and 100 % kerosene as process stream. The viscosities of 

kerosene-water mixtures are higher than the viscosity of water. Hence to maintain the same Reynolds number, 

higher velocity and hence higher mass flow rate must be used for kerosene-water mixture. This leads to increase 

in heat capacity, which in turn reduces the temperature rise. Pure kerosene has the highest viscosity among 

kerosene-water systems and has the lowest thermal effectiveness due to increase heat capacity required to 

maintain the desired Reynolds number. Similar behavior has been observed for other two-phase process streams 

also as shown in Figures 3 to 8. 

 

Figure 2: Influence of Reynolds number on Thermal effectiveness of kerosene-water system  

 

0.001 < μ < 0.05  kg/ms 

678 < ρ < 1199  kg/m
3
 

0.129 < k < 0.624 W/mK 

1418 < pc  < 4187  J/kgK 

 
3.75 < Pr < 67 
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Figure 3: Influence of Reynolds number on Thermal effectiveness of diesel-water system  
 

 
Figure 1: Influence of Reynolds number on Thermal effectiveness of palm oil-water system  
 

 

Figure 5: Influence of Reynolds number on Thermal effectiveness of oleic acid-water system 



V. Alagesan /Int.J. ChemTech Res. 2015,8(4),pp 1791-1802. 1795 

 

 

 

Figure 6: Influence of Reynolds number on Thermal effectiveness of NB-water system 
 

 

Figure 7: Influence of Reynolds number on Thermal effectiveness of dodecane-water system 
 

 

Figure 8: Influence of Reynolds number on Thermal effectiveness of octane-water system 
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3.2. Effect of velocity ratio on thermal effectiveness of process fluid in tube side 

Figure 9 shows the effect of shell-side velocity (process stream velocity) to tube-side velocity (hot 

stream velocity) on thermal effectiveness of process stream, when it was supplied through shell side. Figure 3a 

has been drawn for different compositions of kerosene-water system as the process stream. Thermal 

effectiveness of process fluid at different ratios of process stream to hot stream velocities was obtained by 

performing heat transfer experiments with different flow rates of process fluid at a constant flow rate of hot 

stream. It is observed from Figure 3a that the thermal effectiveness of process stream decreases with increase in 

its velocity ratio for all compositions of two-phase mixture. Similar behavior has been observed for other two-

phase systems as shown in Figures 10 to 15.   

 

Figure 9: Influence of Shell side to tube side velocity ratio on thermal effectiveness of kerosene-water 

system  

 

Figure 10: Influence of Shell side to tube side velocity ratio on thermal effectiveness of diesel-water 

system  
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Figure 11: Influence of Shell side to tube side velocity ratio on thermal effectiveness of palm oil-water 

system  

 

Figure 12: Influence of Shell side to tube side velocity ratio on thermal effectiveness of oleic acid-water 

system  

 

Figure 13: Influence of Shell side to tube side velocity ratio on thermal effectiveness of NB-water system  
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Figure 14: Influence of Shell side to tube side velocity ratio on thermal effectiveness of dodecane-water 

system  

 

Figure 15: Influence of Shell side to tube side velocity ratio on thermal effectiveness of octane-water 

system  

To understand this observation, one may derive an expression relating thermal effectiveness and 

velocity ratio as follows: 

Thermal effectiveness of process stream is  

 
 cihi
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            (1) 

Rewriting Eq. (1) in terms of heat transfer rate and heat capacity, 

S =
Q

mCp( )
cold
Thi -Tci( )

          (2) 

For fixed heat exchanger geometry, heat transfer rate may be expressed as the product of overall heat transfer 

coefficient, heat transfer area and driving force. Accordingly Eq. (2) becomes,  

   cihicold TTmCp
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S






           (3) 
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Neglecting the heat transfer resistance in the tube wall, overall heat transfer coefficient may be related to shell 

side and tube side heat transfer coefficients, ho and hi respectively.   

Therefore, Eq. (3) becomes 

io hhU

111
             (4) 
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io

hh

hh
U


             (5) 

Substituting Eq. (5) in Eq. (3) 

    cihicoldio

io

TTmCphh

Thh
S




          (6) 

If shell side and tube side velocities are ‘v’ and ‘u’ respectively, Eq. (6) may be written for the two-phase on the 

shell-side as follows, accounting heat transfer coefficient-velocity relationship in the power law form, 

   coldcihi
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mn

ACpvTTuv
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                                                              (7)  

In Eq. (7), m & n are exponents in
n

o

m
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Eq. (7) becomes 
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For a constant tube side fluid velocity (u), Eq. (8) may be simplified as follows: 
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            (9) 

where k is u
m-n

, constant at constant tube velocity 

From Eq. (9), it is evident that the thermal effectiveness decreases with ‘v’ or (v/u) ratio. The rate of decrease 

depends on ‘n’ in heat transfer coefficient-shell side velocity relationship. 

The thermal effectiveness is a suitable means of assessing the thermal performance of the heat 

exchanger. The method of thermal effectiveness is based on the effectiveness of a heat exchanger in transferring 

a given amount of heat. Since the mass flow rate and specific heat of both fluids play major role in most 

industrial heat exchangers, thermal effectiveness is related to heat capacity ratio of cold fluid to hot water. 

Thermal effectiveness may be considered to be a function of Reynolds number (Re), Prandtl number 

(Pr) and heat capacity ratio (F) as shown below: 

321 PrRe
kkk

oFkE                      (10) 

Power law type function was assumed, following the conventional correlations for heat transfer 

coefficient and Nusselt number. Tube diameter and two phase velocity were taken as characteristic dimension 

and characteristic velocity in Reynolds number. Heat capacity ratio is the ratio of heat capacity of the two-phase 

fluid to the heat capacity of single phase fluid (hot fluid in this case). 

The regression equation for thermal effectiveness (S) for the two-phase liquid mixture was obtained 

using Minitab-14 as follows: 

286.0057.0453.0 PrRe717.0  FS  for two-phase systems in shell side                          (11) 
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Figure 16 shows the comparison between the experimental values of thermal effectiveness and those calculated 

using Eqn. (11). It is evident from Figure 16 that the Eqn. (11) predict the thermal effectiveness for the two-

phase within ± 13% error for seven liquid-liquid systems for about 245 data points. 

 

Figure 16: Variation between experimental and predicted values of thermal effectiveness for different 

compositions of liquid-liquid systems in shell side 

4. Conclusions  

Thermal effectiveness of two-phase liquid mixture decreases with velocity in a 1-2 shell and tube heat 

exchanger. However, the thermal effectiveness increases with Reynolds number in the laminar flow regime. 

The dependence of thermal effectiveness on Reynolds number follows power-law relationship, with higher 

exponent when the two-phase mixture is supplied on the shell-side. Similarly, the thermal effectiveness of two-

phase mixture is more sensitive to heat capacity ratio while being supplied on the shell-side, compared to that 

supplied on the tube-side. The developed correlation predicts thermal effectiveness of two-phase liquid system 

with a maximum error of ± 13 % for wide range of data points covering 7 different two-phase liquid systems.+ 

Nomenclature 

A Heat transfer area, m² 

pc  Specific heat of process stream, J/kg K 

Di  Inner diameter of the tube, m 

Do  Outer diameter of the tube, m 

Ds  Inner diameter of shell, m 

De  Equivalent diameter, m 

F Heat capacity ratio 

v, u Shell-side and tube-side velocities, m/s 

hi, ho  Tube-side and shell-side heat transfer coefficients, W/m²k 

k Thermal conductivity of cold fluid, W/mK 

m Mass flow rate of process stream, kg/s 

NNu Nusselt number  

NPr Prandtl number 

NRe Reynolds number 

S Thermal effectiveness of process stream  

Thi Inlet temperature of hot water, K 

Tho Outlet temperature of hot water, K 

Tci Inlet temperature of cold fluid, K 

Tco Outlet temperature of cold fluid, K 

Q Volumetric flow rate of process stream, m³/s 
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U Overall heat transfer coefficient, W/m

2
K 

Greek letters 

ΔT Temperature difference in process side, K 

µ Viscosity of cold fluid, kg/ms 

ρ Density of cold fluid, kg/m³ 
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