

ChemTech

International Journal of ChemTech Research CODEN (USA): IJCRGG ISSN: 0974-4290 Vol.8, No.2, pp 945-952, 2015

Studies on Growth and Characterization of Single Crystal using L-Leucine, L-Phenylalanine and L-Valine in Aqueous medium of KNO₃ and Molecular interaction by exposing the Samples to Ultrasonic Frequency of 2MHz

¹M.Sathish, *G.Meenakshi

¹Research scholar, Mononmanium Sundaranar University, Tirunelveli, Tamilnadu, India *Kanchimamunivar Centre for Post graduate Studies, Puducherry-605008, India

Abstract: The single crystals of LVKN, LLKN and LPKN were grown by slow evaporation technique. The crystalline nature and structures of mentioned crystals were confirm by X-ray diffraction analysis. FT-IR studies show the functional group of the material components. The good optical suitability was been confirmed through UV-Vis Spectrum. The encouraging crystal growth characteristics and their properties of titled crystals recommend it as a potential material for SHG device application.

Keywords: Crystal growth, UV-Vis spectrum, FT-IR Spectrum Powder diffraction, SHG.

1.0. Introduction

Most common issues regarding sound speed in solid, liquid and gases have been proved by the researchers form their past decades as sound travels very high in solid. Ultrasonic interferometer a wonderful device for seeking apparent molar compressibility, apparent molar volume and so on through the velocity of sound wave in liquid. Researchers have been attempted many trials to see what will ensue the velocity of sound waves travels in liquid media in different molar concentration and temperature modulation attempt (1). Amino acid components have most common biomolecular components and it contain intermolecular bonds, because of interaction between protein molecules and the solvent ions. To compare the speed of sound in 1.29 E⁻⁶ Ω^{-1} specific conductive solution to Amino acid doped Solution, the speed of sound has been increased by imitable amount. The present research work has been done by using the amino acid components L-Valine, L-Leucine, and L-Phenylalanine which are doped with inorganic KNO₃ and investigate the material nature of the titled issues. At the same time this research work was modified and the same composition from the state of liquid into crystalline solid nature of the titled components through slow evaporation crystal growth technique. The optical and structural activities identify the characteristic nature of the material which helps to distinguish the solid and liquid nature of the titled components.

2.0. Experimental Method

The Apparent molar compressibility (φ_k) and apparent molar volume (φ_v) of L-valine, L-leucine and Lphenylalanine in aqueous solution of KNO₃ at different concentrations were determined at the temperature 303.15 K and the above parameters can be evaluated from precise density, ultrasonic velocity. With the help of these results various ultrasonic derived parameters such as limiting apparent molar compressibility (φ_k°), limiting apparent molar volume (φ_v°), and their constant (S_k, S_v), viscosity A & B-coefficients and the corresponding transfer parameters ($\Delta \phi_k^{o}$, $\Delta \phi_v^{o}$ and ΔB), were evaluated and reported in research paper (2)

Velocities of sound for various molecular compositions have been carried out by using ultrasonic interferometer. Region of middle and approximate molecular composition 0.5 and 1.0 KNO3 verses 0.05 L-Valine, L-Leucine and L-Phenylalanine were taken and crystallizes by slow evaporation techniques. The calculate amount was first dissolved in deionized water. The solution was agitated with a magnetic stirring device of 6h to 7h continuously and filtered after complete dissolution of the starting materials. The Prepare solution was left to standby for almost 30 days at the 300 K. colorless and rod shape crystals were obtained for various compositions as shown in fig.1.

Fig1b

Signle Crystal; Fig.1c.LPKN Single Crystal

3.0. Result and discussion

3.1. UV-Visible spectrum

Optical studies for grown solid LVKN, LLKN and LPKN crystals of mentioned molecular ratios were carried out through Shimadzu UV 1700 spectrometer in the range of 150 -1100 nmshown in fig-2.

Fig .2a,2b,2c: UV-Visible spectrum

The optical absorption with lower cut off wavelength below 205 nm for all titled crystals, shown in table 1 respectively makes this crystals suitable for UV tunable laser and Second harmonic device application (3-6)

Crystal	L-Valine+KNO ₃		L-Leucine+K	NO ₃	L-Phenylalanine+KNO ₃		
Molecular ratio	0.05:0.5	0.05:1.0	0.05:0.5	0.05:1.0	0.05:0.5	0.05:1.0	
Absorption%	0.564	0.323	0.402	0.825	0.434	0.480	

198

Table 1: UV-Visible Spectrum for LVKN, LLKN and LPKN crystals

199

3.2. Tauc's Plot:

Wavelength(nm)

The energy band gaps of LVKN, LLKN, and LPKN of the same molar ratios were carried out by using Tauc's plot(7-8) as shown in fig(3). The indirect optical energy gap were identified for titled crystals are noted in table 2.

198

205

200

196

Table 2 Tauc's Plot for LVKN,LLKN and LPKN crystals

Crystal	L-Valine+	KNO ₃	L-Leucin	e+KNO ₃	L-Phenylalanine+KNO ₃		
Molecular ratio	0.05:0.5	0.05:1.0	0.05:0.5	0.05:1.0	0.05:0.5	0.05:1.0	
Optical Energy gap	5.537	5.33	5.405	5.679	6.248	6.146	

3.3. FT-IR Spectral analysis

The FT-IR spectra of the grown LVKN, LLKN, and LPKN single crystal were recorded in the field range of 500-4000cm-1as shown in Fig 4. The respective absorption frequencies with their assignments are listed in the table 3. The Carboxyl functional group COO- and COOH of LVKN were found at 1583, 1396 cm-1 and amine groups NH2+were found at 1502 cm-1. The inorganic alkali metal functional group N-O and HO-P-OH influences were found at 821 cm-1 and 748 cm-1. Similarly the same functional group of LLKN single crystal were found at 1562cm-1, 1383 cm-1, 1494 cm-1, 825 cm-1, and 746 cm-1. A small functional group were shifted and founded at the same region for LPKN crystals and all the crystal assignments were in good agreements to the reported values (9-15)

Fig.4b2. 600-2000cm-1

3.4. Powder X-ray diffraction (XRD) analysis

The grown crystals were characterized by Powder XRD technique to confirm the crystallinity. The powder samples were scanned in the range between 10°-70° at a scan rate of 2°/min is shown in the fig-5. The evaluated cell parameters of all grown crystals are listed in the table 4 which are in good agreement with the reported works (16-20). The obtained peaks and evaluated lattice parameters revealed that the addition of KNO₃ did change the shape of the structure of mentioned crystals.

X-ray diffraction graph of titiled crystal

L-Valine+KNO ₃		L-Leucine+KNO ₃		L- Phenylalanine+KNO ₃			
0.05:0.5 (mole ratio)	0.05:1.0 (mole ratio)	0.05:0.5 (mole ratio)	0.05:1.0 (mole ratio)	0.05:0.5 (mole ratio)	0.05:1.0 (mole ratio)	Assignment	
3157	3157	3087	3087	-	-	N-H, Stretching, Asymmetric NH ³⁺ Vibration	
2952	2952	2962	2962	2962	2962	Asymmetric Stretching CH ₂ vibration	
-	-	-	2929	2871	-	Asymmetric Stretching CH ₂ vibration	
2626	2626	2362	2362	-	2397	N H stratching Combination of NH ⁺ honding	
2356	2356	2121	2362	2133	2121	N-H stretching, Combination of NH ₃ bonding	
-	1764	1764(s)	1764 (w)	-	1762	C=O stretching vibration ^(a)	
1693	1610	1625(w)	1625(w)	1608	1623	Asymmetric bending of NH_3^+	
1583	1583	1562	1570	1583	1560	NH ₃ ⁺ symmetric bending, Asymmetric stretching of COO ⁻	
1502	1500	1494	1502	1515	1494	$\rm NH_2^+$ Asymmetric bending, symmetric deformation of $\rm NH_3^+$	
1465	1465	1438	1438	1438	1438	CII ⁺ Asymmetric stratching Symmetric CII withoution	
1419	-	1442	1442	1442	1442	CH_3 Asymmetric stretching, Symmetric CH_3 violation	
1396	1388	1409	1409	1407	1409	CH ₂ symmetric bending, COO ⁻ group symmetric vibration	
-	-	1384	1384	1386	1384	CH ₃ deformation	
1350	1350	1340	1340	1315	-	CH ₂ Wagging motion	
1328	1328	1307	1307	1296	1294	CH ₂ wagging, Symmetric bending CH ₃	
1267	1267	1163	1183	1174	1174	CH_3 Rocking, NH_3^+ rocking vibration	
821	824	848	848	846	846	COO rocking, N-O stretching	
748	771	746	-	769	746	N-O stretching	
713	713	700	-	699	700	COO- bending	
669	662	682	660	669	672	COO- bending	
-	-	603	-	-	605	Presents of substitute ring 1,4 distributions	
540	540	524	524	534	526	COO- Rocking, K-O stretching	

Table 3: Functional frequencies of vibrations of LVKN, LLKN and LPKN crystals

Crystal	L-Valine+KNO ₃ (LVKN)				L-Leucine+KNO ₃ (LLKN)			L-Phenylalanine+KNO ₃ (LPKN)		
Molecular	Reported value		Present value		Report	Present value		Reporte	Present value	
ratio			0.05:0. 5	0.05:1. 0	ed value	0.05:0. 5	0.05:1.0	d value	0.05:0.5	0.05:1.0
Crystal system	Mono clinic ⁽¹⁸⁾		Mono clinic	Mono clinic	Mono clinic ⁽¹ ₉₎	Mono clinic	Mono clinic	Mono clinic ⁽²²⁾	Mono clinic	Monocl inic
	α	90.0	90.0	90.0	90.0	90.0	90.0	90.0	90.0	90.0
	β	90.66	107.18	102.34	94.06	113.43	95.14	101.19	90.88	103.44
Lattice	γ	90.0	90.0	90.0	90.0	90	90	90.0	90.0	90.0
parameters	a	9.701	9.815	9.756	14.666	14.876	14.882	11.06	10.43	11.20
	b	5.261	6.154	5.879	5.324	5.322	5.342	5.34	5.22	5.43
	c	11.953	12.43	12.184	9.606	9.652	9.642	11.48	10.86	11.62
Volume	610.04		692.50	614.04	748.00	754.13	752.63	667.00	658.40	669.32

Table 4: Comparison cell parameters of LVKN, LLKN and LPKN crystals

Crystal	L-Valine+KNO ₃		L-Leucir	ne+KNO ₃	L-Phenylalanine+KNO ₃		
Molecular ratio	0.05:0.5 0.05:1.0		0.05:0.5 0.05:1.0		0.05:0.5	0.05:1.0	
KDP reference Output voltage	55mV	55mV	32mV	32mV	38mV	38mV	
Crystals output voltage	44mV	37mV	16.7mv	17.1mv	128mV	134mV	
Efficiency %	1.25	1.48	1.91	1.87	0.29	0.28	

Table 5:Comparisons of SHGsignal outputs andefficiencies

3.5. SHG studies

Kurtz (20) second Harmonic Generation (SHG) test were carried out for titled crystals to find NLO nature of the material (21). The crystalline powdered sample was packed in a capillary tube laser of pulse with 8 ns a wave length of 1064nm and 10 Hz fundamental radiation. The efficacy of SHG was compared with KDP material in table (5)

4.0. Conclusion

The single crystals of LVKN, LLKN and LPKN were grown by slow evaporation technique. FT-IR study shows the functional group identity. The crystalline nature and structures of mentioned crystals were confirm by X-ray diffraction analysis. The good optical suitability was confirmed through UV-Vis Spectrum. The encouraging crystal growth characteristics and their properties of titled crystals recommend it as a potential material for SHG device application. To have a better understanding of the newly formed material it is also essential to study the molecular interaction of the chosen samples by exposing it to ultrasonic frequency.

Acknowledgement

Author acknowledges the Pondicherry University (SAIF), St.Joseph College of Arts and Science, Cuddalor, Tamilnadu and Christ College of Engineering Technology (Research Cell).

References

- 1. Yan, Z, Wang J, Kong W, Lu J, *Fluid Phase Equilib.*, 215 (2004) 143-150.
- 2. Sathis.M, Meenakshi.G, International Journal of Research in Engineering and Technology. 3(2014) 312-317
- 3. P. Vivek, P. Murugakoothan, Opt. Laser Technol. 49 (2013) 288–295.
- 4. R.N. Shaikh , Mohd. Anis , M.D. Shirsat , S.S. Hussaini, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 136 (2015) 1244.
- 5. A. Puhal Raj, C. Ramachandra Raja, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 97 (2012) 86
- 6. N.R. Dhumane, S.S. Hussaini, V.G. Dongre, P. Ghugare, M.D. Shirsat, Appl. Phys.A. 95 (2009) 727–732.
- 7. J. Tauc, Amorphous and Liquid Semiconductors, Plenum, New York, 1974.
- 8. Soma Adhikari, Tanusree Kar Journal of Crystal Growth 356 (2012) 7
- 9. A. Puhal Raj, C. Ramachandra Raja, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 97 (2012) 85
- 10. J. Bellamy, in: The Infrared Spectra of Complex Molecules, Wiley, NewYork, 1995.
- 11. G. Herzberg, in: Infrared and Raman Spectra of Polyatomic Molecules, Van Nostran Reenhold, NewYork, 1945.
- K. Kirubavathi, K. Selvaraju, R. Valluvan, N. Vijayan, S. Kumararaman, Spectrochimica Acta Part A 69 (2008) 1285.
- 13. R.S. Krishnan, V.N. Sankaranarayanan, K. Krishnan, J. Indian Inst. Sci. 55 (1973) 66.
- 14. Soma Adhikari, Tanusree Kar, Materials Chemistry and Physics 133 (2012) 1057
- 15. Sameh Guidara , Habib Feki, Younes Abid, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 115 (2013) 441.
- 16. T. Uma Devi, N. Lawrence, R. Ramesh Babu, K. Ramamurthi, G. Bhagavannarauama, J. Min, J. Min. Mat. Charact. Eng. 8 (4) (2009) 393–403.
- K. Kirubavathi, K. Selvaraju, R. Valluvan, N. Vijayan, S. Kumararaman, Spectrochimica Acta Part A 69 (2008) 1285.
- A. Puhal Raj, C. Ramachandra Raja, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 97 (2012) 84
- 19. M. Coll, X. Solans, M. Font-Altaba, J.A. Subirana, Acta Crystallogr. C 42 (1986)599. Soma Adhikari, Tanusree Kar, Materials Chemistry and Physics 133 (2012) 1057
- 20. K. Anitha, S. Athimoolam, R.K. Rajaram, Acta Crystallogr. E 61 (2005) 01604–01606.
- 21. S. Moitra, T. Kar, Cryst. Res. Technol. 45 (2010) 70–74.
- 22. M. Anbuchezhiyan, S. Ponnusamy, C. Muthamizhchelvan, Spectrachemica ActaPart A. 74(2009)918.
