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Abstract: Chaos theory hasa manifold variety of applications in science and engineering. This 

paper investigates the properties of a chemical chaotic attractor discovered by Haung (2005). 

This paper gives a summary description of the chemical reactor dynamics and the chaos dynamic 

analysis.Next, an adaptive synchronizer is designed using control theory for the global chaos 

synchronization of identical chemical chaotic attractors with unknown parameters. The main 

results for adaptive synchronization of chemical reactors are established using Lyapunov 

stability theory. MATLAB plots have been shown to illustrate the phase portraits of the chemical 

chaotic attractor and the adaptive synchronization of identical chemical chaotic attractors.  
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Introduction 

Chaos theory investigates the qualitative and numerical study of unstable aperiodic behaviour in 

deterministic nonlinear dynamical systems. A dynamical system is called chaotic if it satisfies the three 

properties: boundedness, infinite recurrence and sensitive dependence on initial conditions [1-2].  

Lorenz [3] discovered a 3-D chaotic system when he was studying a 3-D weather model for 

atmospheric convection. After a decade Rössler [4]discovered a 3-D chaotic system, which was constructed 

during the study of a chemical reaction. These classical chaotic systems paved the way to the discovery of 

many 3-D chaotic systems such as Arneodo system [5], Sprott systems [6], Chen system [7], Lü-Chen 

system[8], Cai system[9], Tigan system [10], etc. Many new chaotic systems have been also discovered in the 

recent years such as Sundarapandian systems [11, 12], Vaidyanathan systems [13-20], Pehlivan system [21], 

Jafari system[22],Pham system [23], etc. 

Chaos and control theory havea manifold variety ofapplications in many fields of science and 

engineering such as oscillators[24], lasers [25-26],biology[27], chemical reactions [28-30], neural networks[31-

32],robotics [33-34], electrical circuits [35-36], etc. 

Recently, there is significant result in the chaos literature in the synchronization of physical and 

chemical systems. A pair of systems called master and slave systems are considered for the synchronization 

process and the design goal is to device a feedback mechanism so that the trajectories of the slave system 

asymptotically track the trajectories of the master system. Various methods have been designed for the 

synchronization of chaotic systems such as active control [37-45], adaptive control [46-60], sliding mode 

control [61-68], backstepping control [69-73], etc.  

This paper investigates the analysis and adaptive synchronization of the chemical chaotic reactor model 

discovered by Haung in 2005 [74]. Haung derived the chemical reactor model by considering reactor dynamics 

with five reversible steps.  This paper also derives new results of adaptive synchronizer design for the identical 

chemical chaotic attractors using Lyapunov stability theory [75] and MATLAB plots are shown to illustrate the 

main results.  
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Chemical Chaotic Reactor  

The well-stirred chemical reactor dynamics [74] consist of the following five reversible steps given 

below. 

3 51 2 4

1 2 3 4 5

1 5 2 3 52 ,  2 ,  ,  ,  2
k kk k k

k k k k k

A X X X Y Y A Y A X Z A A Z Z
    

        (1) 

In (1),  are initiators and  are products. The intermediates whose dynamics are 

followed are  and  The corresponding non-dimensionalized dynamical evolution equations read as 

                (2) 

In (2),  are positive mole functions and  and  are positive parameters.  

To simplify the notations, we rename the constants and express the system (2) as 

                        (3) 

The system (3) is chaotic when the system parameters are chosen as 

                         (4) 

For numerical simulations, we take the initial conditions 

and                          (5)  

The 3-D phase portrait of the chemical chaotic reactor is depicted in Fig. 1. 

  The 2-D projections of the chemical chaotic reactor on the  and  planes are depicted 

in Figs. 2-4. 

 

Figure1.The3-D phase portrait of the chemical chaotic reactor 

 

Figure2.The2-D projection of the chemical chaotic attractor on the  plane 
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Figure3.The2-D projection of the chemical chaotic attractor on the  plane 

 

Figure4.The2-D projection of the chemical chaotic attractor on the  plane 

Computational Analysis of the Chemical Chaotic Attractor 

The Lyapunov exponents of the chemical chaotic attractor (3) have been obtained in MATLAB as 

       (6) 

Thus, the Lyapunov dimension of the chemical chaotic attractor (3) is deduced as 

        (7) 

The chemical chaotic attractor has an equilibrium at  

The eigenvalues of the linearized system matrix of the attractor (3) at the origin are: 

        (8) 

Since there are two positive eigenvalues in the set (7), the origin is an unstable equilibrium of the chemical 

chaotic attractor (3). 

Adaptive Control Design of the Chemical Chaotic Attractor 

In this section, we use adaptive control method to design an adaptive feedback synchronizer for globally 

synchronizing the trajectories of identical chemical chaotic reactors with unknown parameters. 

Thus, we consider the master system as the chemical chaotic attractor given by the dynamics 

       (9) 

In (9), are the states of the master system. 

Also, we consider the slave system as the chemical chaotic attractor given by the dynamics 

               (10) 
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In (10),  are the states of the slave system and  are adaptive controls to be determined 

using estimates  of the unknown parameters  respectively. 

The global chaos synchronization error is defined by 

         (11) 

The error dynamics is obtained as 

   (12) 

We consider the adaptive control law defined by 

               (13) 

In (13),  are estimates of the unknown parameters  respectively, 

and  are positive gain constants. 

Substituting (13) into (12), we obtain the closed-loop error dynamical system 

     (14) 

Now, we define the parameter estimation errors as 

         (15) 

Using (15), we can simplify the error dynamics (14) as 

       (16) 

Differentiating (16) with respect to  we get 
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         (17)  

We consider the quadratic Lyapunov function defined by 

     (18) 

Clearly,  is a positive definite function on  

Differentiating  along the trajectories of (16) and (17), we obtain 
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In view of (19), we take the parameter update law as follows. 
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Theorem 1.The identical chemical chaotic attractors (9) and (10) with unknown system parameters are 

globally and exponentially synchronized for all initial conditions by the adaptive control law (13) and the 

parameter update law (20), where  are positive gain constants. 

Proof. We prove this result by Lyapunov stability theory.  

We consider the quadratic Lyapunov function  defined in (18), which is positive definite on  

Substituting the parameter update law (20) into (19), we obtain 

        (21) 

By (21), it follows that  is a negative semi-definite function on  

By Barbalat’s lemma in Lyapunov stability theory [75], it follows that the states  exponentially 

converge to zero as  for all initial conditions. 

Hence, identical chemical chaotic attractors (9) and (10) are globally and exponentially synchronized for all 

initial conditions by the adaptive control law (13) and the parameter update law (20). 

This completes the proof.  

Numerical Simulations 

We use classical fourth-order Runge-Kutta method in MATLAB with step-size for solving 

the systems of differential equations given by (9) and (10), when the adaptive control law (13) is applied. 

We take the gain constants as  

We take the initial conditions of the chemical reactor (9) as 

 
We take the initial conditions of the chemical reactor (10) as 

 
The parameter values of the chemical reactor are taken as in the chaotic case, viz. 

 
Also, we take  

Figs. 5-7 show the complete chaos synchronization of the chemical chaotic reactors (9) and (10). 

Fig. 8 shows the time-history of the chaos synchronization errors  

 

Figure5.Complete synchronization of the states  



Sundarapandian Vaidyanathan /Int.J. ChemTech Res. 2015,8(2),pp 612-621. 617 

 

 

 

Figure6. Complete synchronization of the states  

 

Figure7. Complete synchronization of the states  

 

Figure 8. Time-history of the chaos synchronization errors  

Conclusions 

In this paper, new results have been derived for the analysis and adaptive synchronization of a chemical 

chaotic attractor discovered by Haung (2005). First, the paper discussed the qualitative properties, Lyapunov 

exponents, stability of equilibrium point at the originand phase portraits of the chemical chaotic attractor 

discovered by Haung. Then this paperderived new results for the adaptive synchronizer for the global chaos 

synchronization of the states of the identical chemical chaotic reactors. The main results have been proved using 

Lyapunov stability theory and numerical simulations have been illustrated using MATLAB. 
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