

Vol.8, No.11 pp 237-249,

2015

Modeling of Solar Irradiance, Energy requirement for Microalgae CO₂ Sequestration Using MATLAB-Simulink

Sudharshan K¹, Sudhakar K²

¹Department of Electrical and Electronics, PRIST University, Thanjavur, India

²Department of Energy, National Institute of Technology, Bhopal, India

Abstract: This paper presents an attempt of modeling a generalized Microalgae CO₂ Sequestration model using Matlab/Simulink software package, which can be representative for easy use on simulation platform. The proposed model is modeled in such a way with ease to user in handling and a dialog box like Simulink block libraries. This makes the generalized model easily simulated and analyzed in conjunction with power requirement for a maximum power utilized to cater the process of Sequestration at various levels. Taking the effect of solar Irradiance into consideration, the Micro-Algae growth kinetics and CO2 absorption rate of Sequestration model was simulated using the proposed model. This enables the dynamics of pilot plant system to be easily simulated, analyzed.

Keywords: Micro-Algae; CO₂ Sequestration, Solar Energy, MATLAB model.

Introduction:

With raising concerns about fuel deficit, hiking oil prices, global warming, and damage to ambient nature and ecosystem, there comes now promising incentives to develop alternative energy resources with high efficiency and low emission are of great importance. Among the renewable energy resources, the energy through the Solar effect can be considered the most essential and primary sustainable resource because of the abundance. Regardless of the intermittency of sunlight, solar energy is widely available and completely free of cost. Recently, solar energy in CO₂ Sequestration system by growing Micro bio-Algae species is likely recognized and widely utilized to the forefront in fuel utilities to extract oil out of populated algae in the raceways and open/closed photo bio-reactors. It can generate electricity without environmental impact and contamination when the oil is used in replacement of oil fired power stations, else the co firing of Algae residues in compliment to conventional coal fired power plants. Being biological systems, the Carbon sequestrating Solar System (CCSS) is static, quite, and free of moving parts, and these make it have little operation and maintenance costs. Even though the system is posed to its high capital fabrication cost and low conversion efficiency, the hiking oil prices make solar energy naturally viable energy supply with potentially long-term benefits. CCSS module represents the fundamental natural incubator unit of a bio-chemical system. The output characteristics of the module depend on the Solar Insolation, the CO₂ and assumed standard nutrients (nitrogen, phosphorus, potassium in sols). Since PV module has nonlinear characteristics, it is necessary to model it for the design and simulation of maximum output for various locality applications. The mathematical models used in computer simulation have been built for over the past four decades. However in MATLAB/Simulink package there is no CCSS model to integrate with simulation technology. Thus, it is difficult to simulate and analyze in the generic modeling of sequestration system. This motivates to develop a generalized model for Carbon sequestration using Simulink. The main contribution of this paper is the

implementation of a generalized model in the form of masked block, which has a user-friendly icon and dialog in the same way of Simulink block libraries or other component-based sub-system simulations.

Materials & Methods:

Algae farms on the use of open shallow ponds were CO2 emitted from the power plants are bubbled into the raceway ponds and utilized by algal strains growing the aqueous suspensions. The program targeted coal -fired power plants as the main sources of CO_2 . [1] In the traditional raceway design, culture depth and biomass concentrations have to be maintained low to ensure efficient penetration of sunlight. Large-scale raceways for algal cultivation have been operated with depths ranging from 30 to 50 cm. [2]

Figure 1: Sun, Water, Nutrients and CO2 input to raceway ponds [1] [3]

Figure 2: Array set-up of raceway ponds [1]

Here are in a position to estimate and model the Pond raceway's intake of various parameters especially sunlight (Photo synthetically active radiation-PAR), Yield of Algae, and auxiliary power consumptions that has to meet out in operating the raceway to maintain the yield as optimum.

i. Modeling of the Solar Insolation over the Micro Algae culture in Raceway:

The Insolation on the Culture depends upon the geometric position (demoted by latitude and longitude), which determines the site getting the interaction with sun (Solar Angle) and the time of the day (denoted by solar hour angle, declination, local solar time).

Figure 3: Model for Photosynthetically active Irradiance

Table 1	: Design f	for modeling	the Solar	Insolation ov	ver the Micro	Algal Culture
					•••••••	

Symbo l	Parameter	Design particulars:	Units:	Cited from
N	Day of year	0 to 365	No units	[4]
ø	Latitude angle	Specific to site of location Assumed from literature	degree	[4]
β	Angle of ground elevation	Specific to site of location Assumed from literature	degree	[5]
δ	Declination angle	$\delta = 23.45 \text{Sin} \left(\frac{360(284 + \text{N})}{365} \right)$	degree	[5]
LST	Local solar time	local Solar time = Standard time $\pm \left[\frac{T C F}{60}\right]$	minute	[5]
Е	Equation of time	E = 9.87(Sin2B) - 7.53(CosB) - 1.5(SinB)	minute	[5]

		$B = \frac{360(N-81)}{264}$		
тCF	Time Correction Factor	364 $TCF = 4(L_{st} - L_{oc}) + E$	minute	[5]
ω	Solar hour angle	$\omega = 15$ (Local Solar time – 12)	degree	[6]
ω	Solar angle	$\omega_{\mathfrak{s}} = \cos^{-1}(-\tan\delta\tan(\emptyset - \beta))$ $\omega_{\mathfrak{s}} = \cos^{-1}(-\tan\delta\tan(\emptyset))$	degree	[5,6]
θ	Angle of incidence	$\theta = cos^{-1} (\sin \Box \phi \sin \delta \cos \beta - \sin \delta \sin \beta \cos \Box \phi \cos cos)$	degree	[4]
θz	Zenith angle	$\theta_{z} = \cos^{-1}(\cos \Box \emptyset \cos \delta \cos \omega - \sin \beta \sin \Box \emptyset)$	degree	[5]
ts	Total Sunshine hours	$t_{\text{S}} = \left(\frac{2}{15}\right) \cos^{-1}(-\tan\delta\tan(\emptyset))$	hour	[4]
a& b	Empirical constants	$a = 0.409 - (0.5016 \sin(\omega_s - 60))$ b = 0.6609 - (0.4767 sin(\omega_s - 60))	No units	[7]
Нg	Daily Solar Radiation	$H_{o} = \left(\frac{24 I_{sc}}{\pi}\right) \left(1.0 + 1.033 \cos\left(\frac{360 N}{365}\right)\right) \left(\left(\cos \emptyset \cos \delta \sin \omega_{s}\right) + H_{g} = H_{0} \left(a + b \left(\frac{n}{N}\right)\right)$	kJ $m^{-2}d^{-1}$	[7,8,9]
n	measured number of sunshine hours	Specific to site of location Assumed from literature Taken as 11.99978208	hour	[8.9]
N	number of sunshine hours calculated	Specific to site of location Assumed from literature Taken as 13.71448293	hour	[8.9]
ⁿ / _N	Atmospheric clarity	Specific to site of location Assumed from literature Taken as 0.874971528	no units	[8,9]
I _{sc}	solar constant energy received from sun for a unit time on a area perpendicular to sun rays	Assumed from literature Taken as 1.367	kJ $m^{-2}d^{-1}$	[8,9]
I _t	Hourly Solar Radiation	$= \left(\frac{3.142 \text{ H}_g}{24}\right) (\mathbf{a} + \mathbf{b} \cos \omega_s) \left \frac{\cos \omega_s - \cos \omega}{\sin \omega_s - \omega_s \cos \omega_s} \right $	kJ m ⁻² hr ⁻¹	[8,9]
Ef	Photosynthetic efficiency	Assumed from literature Taken as 1.74± 0.09 ×10–6	EJ^{-1}	[8,9]
I	Photosynthetic active irradiance	$\mathbf{I} = [[(\mathbf{I}]_{\dagger}) * (\mathbf{E}_{\dagger})]$	$\underset{s^{-1}}{\mu Em^{-2}}$	[8,9]

ii. Modeling of the Algae Growth Yield:

The growth of the Micro-Algae is modeled by the First order growth kinetics given by the famous Monod Equation , which requires the input parameters such as specific growth rate of the Algae, Inhibition level, concentration level of CO_2 , Photo synthetically active irradiance and the alkalinity of the water

Figure 4: Model for Algae Growth Yield

Table	2: Design	for modeling	the growth	vield of Micro	Algal Culture
					a

Symbol	Parameter	Design particulars:	Units:	Cited from
X _{C02} ,g	initial molar fraction of CO ₂	Assumed from literature Taken as 0.009	gram	[10]
рН	Acidity/ Alkalinity	Assumed from literature Taken as 8.08	No units	[10]
Ctot	total dissolved carbon in the liquid phase	$C_{tot} = (10^{-1.5} X_{CO_2 g}) + \left[\left(\frac{10^{-7.8}}{10^{-pH}} \right) X_{CO_2 g} \right] + \left[\left(\frac{10^{-28.1}}{10^{-2pH}} \right) X_{CO_2 ,g} \right]$	No units	[10]
K ₁	inhibition constants	Assumed from literature Taken as 69.86	k mol Cm ³	[12]
К _с	half- saturation constant	Assumed from literature Taken as 0.0002	k mol Cm ³	[12]
µ _{max} ≣≣	maximum specific growth rate	Specific to each Individual Micro-Algal Strains Assumed from literature Taken as	h^{-1}	[12]
μ	Algae specific growth rate	$\mu = \mu_{max} \left[\left(\frac{I_t}{I_t + K_1} \right) \left(\frac{C_{tot}}{K_c + C_{tot} + \frac{C_{tot}^2}{K_1}} \right) \right]$	degree	[12]
X	Initial concentratio n	Assumed from literature Taken as	g drycell m ⁻³	[13,14]
х	Cell Concentrati on	$X = X_{0}(e^{\mu t})$	g drycell m ⁻³	[13,14]

iii. Engineering aspects for carbon sequestration designing the limits for CO₂ intake:

Figure 5: Model for Energy Intake by the Culture

 Table 3: Design for modeling the Energy Intake by the Culture

Symbol	Parameter	Design particulars:	Units	Cited
				from
k _L	the liquid-phase mass transport coefficient	Assumed from literature Taken as 0.00016	ms ⁻¹	[15]
C _s	saturation concentration of CO_2	$C_s = 28 \times P_1$	mol	[15]
P _A , P₁, P 2	the partial pressure of CO_2	Assumed from literature Taken as 90%	atm	[16]
k _H	Henry's Law constant for CO_2 at 30 °C	Assumed from literature Taken as 2000	atm mol ⁻¹	[16]
$\rho_{\mathbf{m}}$	molar density of water (in)	Assumed from literature Taken as 56,000	mol m ⁻³	[15]
С	at 30 °C the concentration of CO_2	$C = P_A \rho_m k_H$	mol	[15]
C _s - c	the saturation concentration of CO_2	Assumed from literature Taken as 0.1	mol	[15]
R	<i>Transport rate of</i> CO_2	$\mathbf{R} = \mathbf{k}_{\mathrm{L}}(\mathbf{C}_{\mathrm{s-C}})$	L min ⁻¹	[17]

Vm	the molar volume of ideal gas at 30° C	Assumed from literature	mol m ⁻³	[15]
Vg	volume of the gas bubble	Assumed from literature	m ³	[15]
Ag	Area of gas bubble	Assumed from literature	cm ²	[18]
Ac	area of column cross-section	$A_c = 10A_c$	cm ²	[18]
Qg	CO_2 gas flow rate	Assumed from literature Taken as 0.93	L min ⁻¹	[18]
ν _g	bubble rise velocity	Assumed from literature Taken as 0.3	m s ⁻¹	[18]
a,co ₂	the mass of CO_2 fixed by unit biomass	Assumed from literature Taken as 1.833	gram	[19]
C _{f.b}	final dry biomass concentrations		g L ⁻¹	[20]
C _{i,b}	initial dry biomass concentrations		g L ⁻¹	[20]
Т	batch test period T		day	[20]
P _h	Biomass productivity	$\mathbf{P}_{\mathbf{b}} = \frac{1}{T} \begin{pmatrix} \mathbf{C}_{\mathbf{f},\mathbf{b}} \\ \mathbf{C}_{\mathbf{i},\mathbf{b}} \end{pmatrix}$	dry g L ⁻¹ day ⁻¹	[20]
W _h	average harvested dry biomass per day		dry g day ⁻¹	
VR	working volume of the reactor		m ³	
Pe	Biomass productivity	$P_{c} = \frac{W_{h}}{1000 V_{R}}$	dry g L ⁻¹ day ⁻¹	[19]
R	hydraulic Radius of the algae pond	Assumed from literature Taken as 0.115385	m	[21]
V _{racewa}	<i>Velocity of the water in raceway</i>	$V_{raceway} = \frac{1}{n} R^{2/3} s^{1/2}$ Assumed from literature Taken as 3	m ³	[21]
S	Head loss per unit length of raceway	$s = \frac{n^2 V_{raceway}^2}{R^{4/3}}$	m	[21]
H _R	Total head loss in raceway	$H_{R} = \frac{n^{2}L_{R}V_{raceway}^{2}}{n^{4}/3}$	m	[22]
n	Manning fraction	Assumed from literature Taken as 0.008	no units	[23]
QL	volume flow rate of liquid in raceway	Assumed from literature Taken as 9.81	$m^3 s^{-1}$	[23]
ρ_{L}	the density of the water	Assumed from literature Taken as 998.2	kg m ⁻³	[22]
g	Constant gravitational acceleration	Assumed from literature Taken as 9.81	ms ⁻²	[22]
P _R	Power required for maintaining flow in raceway	$P_{R} = \frac{Q_{L}\rho_{L}g n^{2}V_{raceway}^{2}}{R^{4}/_{3}}$	Kilowatt	[23]
$\nu_{\mathbf{p}}$	velocity of paddle relative to water		ms ⁻¹	[23]
C _D	the drag coefficient for flat paddles	Assumed from literature Taken as 1.8	no units	[23]
Ap	the area of the paddle in a plane perpendicular to the direction of motion	Assumed from literature Taken as 0.72	m ²	[23]
P _P	power required for mixing by the paddlewheel	$P_{\mathbf{p}} = \frac{C_{\mathrm{D}}\rho_{\mathrm{L}}A_{\mathrm{P}}\nu_{\mathrm{P}}^{3}}{2}$	Kilowatt	[24]

$\Delta \mathbf{d}$	Change in depth in the pond	Assumed from literature	m	[25]
		Taken as 0.075		
d	Raceway Pond depth	Assumed from literature	m	[25]
		Taken as 0.12		
w	Raceway Pond width	Assumed from literature	m	[25]
		Taken as 6		
V	mixing velocity	Assumed from literature	ms ⁻¹	[25]
		Taken as 30		
L	length of the pond	$L = \left(\frac{\Delta d \left(\frac{d \times w}{(w+2d)}\right)^{4/3}}{V^{2} \times n^{2}}\right)$	m	[25]
Α	mixable area	$\mathbf{A} = \mathbf{L} \mathbf{W}$	m^2	[25]
γ	the specific weight of the broth	Assumed from literature	$N m^3$	[26]
·		Taken as 9810		
Н	Height of the carbon column tube	Assumed from literature	m	[26]
		Taken as 3.1		
A _R	mixable area receiving the PAR		m	[26]
I _L	PAR		kJ m ⁻² hr ⁻¹	[26]
E _L	Light energy input per unit reactor volume	$E_{L} = \frac{0.22 I_{L} A_{R}}{V_{R}}$	kJ m ^{-2} d ^{-1}	[26]
E _C	Mechanical energy input per unit reactor volume	$E_{G} = \frac{Q_{G}\gamma \dot{H}}{V_{R}}$	W m ⁻³	[26]
PTOTAL	Total power input to the Culture	$P_{TOTAL} = (E_G + E_L + P_P)$	W	[26]

Figure 7: Embedded MATLAB Subsystem for Carbon Sequestration Model

📲 Embi	edded MATLAB Editor		
File Edi	Text Debug Tools Window Help		
D 🚅	🛛 🕹 🖿 🗛 🔄 🔶 🖄 📂 🖬 🖓 🦏 🛍 🗐		
Diseku		Dista	
DIUCK	arbon_sequestration_modevsubsystem/PAK • • • • ×	DIUCK	Carbon_Sequestration_ModeoSubsystem/Tretu_Calculation:
1	function [del1, W1, Ws2, a, b, H, Hg, Ig, PAR]=Solar_Radiatio:	1	function [Mu, Y] = Yield_Calculation(PAR, Mu_max, K1, Xo, X_C
2		2	
3	<pre>%Solar_Radiation_ModelingSolar_Radiation_Modeling</pre>	3	<pre>%Yield_CalculationYield_Calculation</pre>
4	te s ar annan an s a	4	and a second a second second second a second second
5 -	lat=(pi/180) *lat_obs;	5 -	C_tot=(((10^(-1.5))*(X_C02))+(((10^(-7.8))/(10^(-pH)))*(
6	%B=(360*((h-81)/364));	6 -	Mu=((Mu_max*PAR)/(K1+(PAR)))*(C_tot/(C_tot+((C_tot)^2/K1
7	$\Sigma = (9.87*(SIN(2*(B))) - 7.53*(COS((B))) - 1.5*(SIN((B))))$	7 -	Y=X0*(EXP(Mu*24));
8	<pre>%ICF=4*((long_std)-(long_obs))+E;</pre>	8	
9	<pre>%L std_time=((lat)+((ltr)/(6U)));</pre>	9	
10 -	del1= (23.45°S1h((2°3.142)°(204+N)/305));		
12 -	del=(p1/100) *(del1);		
12 -	$W_1 = (15^{\circ}(1-12));$ $W_2 = (55^{\circ}(1-12));$		
14 -	W= = accs((_1))((01))		
17	ws = acos((-1)-(can(tac))-(can(tac)));		
5		<	2 A A A A A A A A A A A A A A A A A A A
Block: (arbon Sequestration Model/Subsystem/Carbon Sequesatrtio 🕴 🗖 🗙	Block	Carbon Sequestration Hedel/Subsystem/Dewer Evaluation* 3 C X
Approximation of the		DIOCK.	carbon_sequestration_modevsubsystem/rower_rvatuvation r 🗆 🔨
1	function [CY, pond length, pond area, pond vol, T litres,	1	function [light Energy, Gas pump power, water pump power,
1 2	function [CY, pond_length, pond_area, pond_vol, T_litres, ^	1 2	<pre>function [light_Energy,Gas_pump_power_vater_pump_power,' %#eml</pre>
1 2 3	function [CY, pond_length, pond_area, pond_vol, T_litres, ^	1 2 3 -	<pre>function [light_Energy,Gas_pump_power_vater_pump_power,' ##eml light_Energy=(0.22*PAR*pondarea/T_litres);</pre>
1 2 3 4	function [CY,pond_length,pond_area,pond_vol,T_litres,	1 2 3 - 4 -	<pre>function [light_Energy,Gas_pump_power_vater_pump_power,' %#eml light_Energy=(0.22*PAR*pondarea/T_litres); T_light_Energy=(((light_Energy*pondarea*T_no_pond)));</pre>
1 2 3 4 5 -	<pre>function [CY,pond_length,pond_area,pond_vol,T_litres, tCarbon_Sequesatrtion_Evaluation pond_length = (del_d*(((pond_depth*pond_width)/(pond_w)))</pre>	1 2 3 - 4 - 5 -	<pre>function [light_Energy,Gas_pump_power_tvaluvation = v = 1 x function [light_Energy,Gas_pump_power,water_pump_power,* %#eml light_Energy=(0.22*PAR*pondarea/T_litres); T_light_Energy=((light_Energy*pondarea*T_no_pond))); Vol_carbon_column=(3.142*((cc_tube_dia/2)^2)*cc_tube_H).</pre>
1 2 3 4 5 - 6 -	<pre>function [CY, pond_length, pond_area, pond_vol, T_litres, * *Carbon_Sequesatrtion_Evaluation pond_length = (del_d*(((pond_depth*pond_width)/(pond_w pond_area=(pond_length*pond_width);</pre>	1 2 3 - 4 - 5 - 6 -	<pre>function [light_Energy,Gas_pump_power_twater_pump_power,' %#eml light_Energy=(0.22*PAR*pondarea/T_litres); T_light_Energy=(((light_Energy*pondarea*T_no_pond))); Vol_carbon_column=(3.142*((cc_tube_dia/2)^2)*cc_tube_H). Gas_pump_power=(Gas_discharge*etha*cc_tube_H/Vol_carbon</pre>
1 2 3 4 5 - 6 - 7 -	<pre>function [CY, pond_length, pond_area, pond_vol, T_litres, *Carbon_Sequesatrtion_Evaluation pond_length = (del_d*(((pond_depth*pond_width)/(pond_w pond_area=(pond_length*pond_width); pond_vol=pond_area*pond_depth;</pre>	1 2 3 - 4 - 5 - 6 - 7 -	<pre>function [light_Energy,Gas_pump_power,water_pump_power,' %#eml light_Energy=(0.22*PAR*pondarea/T_litres); T_light_Energy=(((light_Energy*pondarea*T_no_pond))); Vol_carbon_column=(3.142*((cc_tube_dia/2)^2)*cc_tube_H). Gas_pump_power=(Gas_discharge*etha*cc_tube_H/Vol_carbon T_gas_pump_power=(Gas_pump_power*T_no_pond)/(10^6);</pre>
1 2 3 4 5 - 6 - 7 - 8 -	<pre>function [CY, pond_length, pond_area, pond_vol, T_litres, * *Carbon_Sequesatrtion_Evaluvation pond_length = (del_d*(((pond_depth*pond_width)/(pond_w pond_area=(pond_length*pond_width); pond_vol=pond_area*pond_depth; CY=(Y*pond_width*pond_area);</pre>	1 2 3 - 4 - 5 - 6 - 7 - 8 -	<pre>function [light_Energy,Gas_pump_power_twater_pump_power,' %#eml light_Energy=(0.22*PAR*pondarea/T_litres); T_light_Energy=(((light_Energy*pondarea*T_no_pond))); Vol_carbon_column=(3.142*((cc_tube_dia/2)^2)*cc_tube_H). Gas_pump_power=(Gas_discharge*etha*cc_tube_H/Vol_carbon T_gas_pump_power=(Gas_pump_power*T_no_pond)/(10^6); water_pump_power=((Cd*Rho_1*pond_depth*pond_width*(pond_))); </pre>
1 2 3 4 5 - 6 - 7 - 8 - 9 -	<pre>function [CY, pond_length, pond_area, pond_vol, T_litres, tCarbon_Sequesatrtion_Evaluation pond_length = (del_d*(((pond_depth*pond_width)/(pond_w pond_area=(pond_length*pond_width); pond_vol=pond_area*pond_depth; CY=(Y*pond_width*pond_area); litres_per_pond=pond_vol*1000;</pre>	1 2 3 - 4 - 5 - 6 - 7 - 8 - 9 -	<pre>function [light_Energy,Gas_pump_power_twater_pump_power,' %#eml light_Energy=(0.22*PAR*pondarea/T_litres); T_light_Energy=((light_Energy*pondarea*T_no_pond))); Vol_carbon_column=(3.142*((cc_tube_dia/2)^2)*cc_tube_H). Gas_pump_power=(Gas_discharge*etha*cc_tube_H/Vol_carbon T_gas_pump_power=(Gas_pump_power*T_no_pond)/(10^6); water_pump_power=((Cd*Rho_1*pond_depth*pond_width*(pond T_water_pump_power=(water_pump_power*T_no_pond)/(10^6);</pre>
1 2 3 4 5 - 6 - 7 - 8 - 9 - 10 -	<pre>function [CY, pond_length, pond_area, pond_vol, T_litres, * *Carbon_Sequesatrtion_Evaluation pond_length = (del_d*(((pond_depth*pond_width)/(pond_w pond_area=(pond_length*pond_width); pond_vol=pond_area*pond_depth; CY=(Y*pond_width*pond_area); litres_per_pond=pond_vol*1000; T_no_pond=((area_avail)/pond_area);</pre>	1 2 3 - 4 - 5 - 6 - 7 - 8 - 9 - 10 -	<pre>function [light_Energy,Gas_pump_power,water_pump_power, %#eml light_Energy=(0.22*PAR*pondarea/T_litres); T_light_Energy=(((light_Energy*pondarea*T_no_pond))); Vol_carbon_column=(3.142*((cc_tube_dia/2)^2)*cc_tube_H). Gas_pump_power=(Gas_discharge*etha*cc_tube_H/Vol_carbon T_gas_pump_power=(Gas_pump_power*T_no_pond)/(10^6); water_pump_power=((Cd*Rho_1*pond_depth*pond_width*(pond T_water_pump_power=(water_pump_power*T_no_pond)/(10^6); T_power=(T_light_Energy+T_gas_pump_power+T_water_pump_p());</pre>
1 2 3 4 5 - 6 - 7 - 8 - 9 - 10 - 11 -	<pre>function [CY, pond_length, pond_area, pond_vol, T_litres, *Carbon_Sequesatrtion_Evaluvation pond_length = (del_d*(((pond_depth*pond_width)/(pond_w pond_area=(pond_length*pond_width); pond_vol=pond_area*pond_depth; CY=(Y*pond_width*pond_area); litres_per_pond=pond_vol*1000; T_no_pond=((area_avail)/pond_area); T_litres=litres_per_pond*T_no_pond;</pre>	1 2 3 - 4 - 5 - 6 - 7 - 8 - 9 - 10 - 11	<pre>function [light_Energy,Gas_pump_power_tvater_pump_power,' ##eml light_Energy=(0.22*PlR*pondarea/T_litres); T_light_Energy=(((light_Energy*pondarea*T_no_pond))); Vol_carbon_column=(3.142*((cc_tube_dia/2)^2)*cc_tube_H). Gas_pump_power=(Gas_discharge*etha*cc_tube_H/Vol_carbon T_gas_pump_power=(Gas_pump_power*T_no_pond)/(10^6); water_pump_power=((Cd*Rho_1*pond_depth*pond_width*(pond T_water_pump_power=(water_pump_power*T_no_pond)/(10^6); T_power=(T_light_Energy+T_gas_pump_power+T_water_pump_p)</pre>
1 2 3 4 5 - 6 - 7 - 8 - 9 - 10 - 11 - 12 -	<pre>function [CY, pond_length, pond_area, pond_vol, T_litres,</pre>	1 2 3 - 4 - 5 - 6 - 7 - 8 - 9 - 10 - 11 12	<pre>function [light_Energy,Gas_pump_power_twater_pump_power,' ##eml light_Energy=(0.22*PAR*pondarea/T_litres); T_light_Energy=(((light_Energy*pondarea*T_no_pond))); Vol_carbon_column=(3.142*((cc_tube_dia/2)^2)*cc_tube_H), Gas_pump_power=(Gas_discharge*etha*cc_tube_H/Vol_carbon] T_gas_pump_power=(Gas_pump_power*T_no_pond)/(10^6); water_pump_power=((Cd*Rho_1*pond_depth*pond_width*(pond] T_water_pump_power=(water_pump_power*T_no_pond)/(10^6); T_power=(T_light_Energy+T_gas_pump_power+T_water_pump_po</pre>
1 2 3 4 5 - 6 - 7 - 8 - 9 - 10 - 11 - 12 - 13 -	<pre>function [CY, pond_length, pond_area, pond_vol, T_litres, * *Carbon_Sequesatrtion_Evaluvation pond_length = (del_d*(((pond_depth*pond_width)/(pond_w pond_area=(pond_length*pond_width); pond_vol=pond_area*pond_depth; CY=(Y*pond_width*pond_area); litres_per_pond=pond_vol*1000; T_no_pond=((area_avail)/pond_area); T_litres=litres_per_pond*T_no_pond; T_no_Biomass=(T_no_pond*CY); lipid_prod=((CY)/(1000*pond_vol));</pre>	1 2 3 - 4 - 5 - 6 - 7 - 8 - 9 - 10 - 11 12 13	<pre>function [light_Energy,Gas_pump_power_twater_pump_power,' %#eml light_Energy=(0.22*PAR*pondarea/T_litres); T_light_Energy=(((light_Energy*pondarea*T_no_pond))); Vol_carbon_column=(3.142*((cc_tube_dia/2)^2)*cc_tube_H). Gas_pump_power=(Gas_discharge*etha*cc_tube_H/Vol_carbon T_gas_pump_power=(Gas_pump_power*T_no_pond)/(10^6); water_pump_power=((Cd*Rho_1*pond_depth*pond_width*(pond T_water_pump_power=(water_pump_power*T_no_pond)/(10^6); T_power=(T_light_Energy+T_gas_pump_power+T_water_pump_po</pre>
1 2 3 4 5 - 6 - 7 - 8 - 9 - 10 - 11 - 12 - 13 - 14 -	<pre>function [CY, pond_length, pond_area, pond_vol, T_litres, * *Carbon_Sequesatrtion_Evaluvation pond_length = (del_d*(((pond_depth*pond_width)/(pond_w pond_area=(pond_length*pond_width); pond_vol=pond_area*pond_depth; CY=(Y*pond_width*pond_area); litres_per_pond=pond_vol*1000; T_no_pond=((area_avail)/pond_area); T_litres=litres_per_pond*T_no_pond; T_no_Biomass=(T_no_pond*CY); lipid_prod=((CY)/(1000*pond_vol)); T_lipid_prod=((lipid_prod*T_litres*T_no_pond)); </pre>	1 2 3 - 4 - 5 - 6 - 7 - 8 - 9 - 10 - 11 12 13	<pre>function [light_Energy, Gas_pump_power_twater_pump_power,' ##eml light_Energy=(0.22*PAR*pondarea/T_litres); T_light_Energy=(((light_Energy*pondarea*T_no_pond))); Vol_carbon_column=(3.142*((cc_tube_dia/2)^2)*cc_tube_H). Gas_pump_power=(Gas_discharge*etha*cc_tube_H/Vol_carbon] T_gas_pump_power=(Gas_pump_power*T_no_pond)/(10^6); water_pump_power=((Cd*Rho_1*pond_depth*pond_width*(pond] T_water_pump_power=(water_pump_power*T_no_pond)/(10^6); T_power=(T_light_Energy+T_gas_pump_power+T_water_pump_po</pre>
1 2 3 4 5 - 6 - 7 - 8 - 9 - 10 - 11 - 12 - 13 - 14 - ¢	<pre>function [CY, pond_length, pond_area, pond_vol, T_litres, +Carbon_Sequesatrtion_Evaluvation pond_length = (del_d*(((pond_depth*pond_width)/(pond_w pond_area=(pond_length*pond_width); pond_vol=pond_area*pond_depth; CY=(Y*pond_width*pond_area); litres_per_pond=pond_vol*1000; T_no_pond=((area_avail)/pond_area); T_litres=litres_per_pond*T_no_pond; T_no_Biomass=(T_no_pond*CY); lipid_prod=((CY)/(1000*pond_vol)); T_lipid_prod=((lipid_prod*T_litres*T_no_pond)); CALCALL_ALL_ALL_ALL_ALL_ALL_ALL_ALL_ALL_</pre>	1 2 3 - 4 - 5 - 6 - 7 - 8 - 9 - 10 - 11 12 13	<pre>function [light_Energy, Gas_pump_power, water_pump_power,' *#eml light_Energy=(0.22*PAR*pondarea/T_litres); T_light_Energy=(((light_Energy*pondarea*T_no_pond))); Vol_carbon_column=(3.142*((cc_tube_dia/2)^2)*cc_tube_H), Gas_pump_power=(Gas_discharge*etha*cc_tube_H/Vol_carbon] T_gas_pump_power=(Gas_pump_power*T_no_pond)/(10^6); water_pump_power=((Cd*Rho_1*pond_depth*pond_width*(pond] T_water_pump_power=(water_pump_power*T_no_pond)/(10^6); T_power=(T_light_Energy+T_gas_pump_power+T_water_pump_po())</pre>
1 2 3 4 5 - 6 - 7 - 8 - 9 - 10 - 11 - 12 - 13 - 14 - - - Subsyst	<pre>function [CY, pond_length, pond_area, pond_vol, T_litres, iCarbon_Sequesatrtion_Evaluvation pond_length = (del_d*(((pond_depth*pond_width)/(pond_w pond_area=(pond_length*pond_width); pond_vol=pond_area*pond_depth; CY=(Y*pond_width*pond_area); litres_per_pond=pond_vol*1000; T_no_pond=((area_avail)/pond_area); T_litres=litres_per_pond*T_no_pond; T_no_Biomass=(T_no_pond*CY); lipid_prod=((CY)/(1000*pond_vol)); T_lipid_prod=((lipid_prod*T_litres*T_no_pond)); Con_tous_is_is_to contexts = pice.exts = pice.ext</pre>	1 2 3 - 4 - 5 - 6 - 7 - 8 - 9 - 10 - 11 12 13	<pre>function [light_Energy, Gas_pump_power, water_pump_power,' ##eml light_Energy=(0.22*PlR*pondarea/T_litres); T_light_Energy=(((light_Energy*pondarea*T_no_pond))); Vol_carbon_column=(3.142*((cc_tube_dia/2)^2)*cc_tube_H). Gas_pump_power=(Gas_discharge*etha*cc_tube_H/Vol_carbon T_gas_pump_power=(Gas_pump_power*T_no_pond)/(10^6); water_pump_power=((Cd*Rho_1*pond_depth*pond_width*(pond T_water_pump_power=(water_pump_power*T_no_pond)/(10^6); T_power=(T_light_Energy+T_gas_pump_power+T_water_pump_po </pre>
1 2 3 4 5 - 6 - 7 - 8 - 9 - 10 - 11 - 12 - 13 - 14 - - - Subsystem Ready	<pre>function [CY, pond_length, pond_area, pond_vol, T_litres, tCarbon_Sequesatrtion_Evaluvation pond_length = (del_d*(((pond_depth*pond_width)/(pond_w pond_area=(pond_length*pond_width); pond_vol=pond_area*pond_depth; CY=(Y*pond_width*pond_area); litres_per_pond=pond_vol*1000; T_no_pond=((area_avail)/pond_area); T_litres=litres_per_pond*T_no_pond; T_no_Biomass=(T_no_pond*CY); lipid_prod=((CY)/(1000*pond_vol)); T_lipid_prod=((lipid_prod*T_litres*T_no_pond)); Co_co_n_locations_T_no_pond; T_lipid_prod=((lipid_prod*T_litres*T_no_pond)); Co_co_n_locations_T_no_co_nd*CY); lipid_prod=(CY)/(1000*pond_vol)); Co_co_n_locations_T_no_co_nd); Lipid_prod=(CY)/(1000*pond_vol)); Co_co_n_locations_T_no_co_nd); Lipid_prod=(CY)/(1000*pond_vol)); Co_co_n_locations_T_no_co_nd); Lipid_prod=(CY)/(1000*pond_vol)); Co_co_n_locations_T_no_co_nd); Lipid_prod=(CY)/(1000*pond_vol)); Co_co_n_locations_T_no_co_nd); Lipid_prod=(CY)/(1000*pond_vol)); Co_co_n_locations_T_no_co_nd); Lipid_prod=(CY)/(1000*pond_vol)); Co_co_n_locations_T_no_co_nd); Lipid_prod=(CY)/(1000*pond_vol)); Co_co_n_locations_T_no_co_nd); Lipid_prod=(CY)/(1000*pond_vol)); Co_co_n_locations_T_no_co_nd); Lipid_prod=(CY)/(1000*pond_vol)); Co_co_n_locations_T_no_co_nd); Lipid_prod=(CY)/(1000*pond_vol)); Co_co_n_locations_T_no_co_nd); Lipid_prod=(CY)/(1000*pond_vol)); Co_co_n_locations_T_no_co_nd); Lipid_prod=(CY)/(1000*pond_vol)); Co_co_n_locations_T_no_co_nd); Co_co_n_locations_T_no_co_nd); Co_co_n_locations_T_no_co_nd); Lipid_prod=(CY)/(1000*pond_vol)); Co_co_n_locations_T_no_co_nd); Lipid_prod=(CY)/(1000*pond_vol)); Co_co_n_locations_T_no_co_nd); Lipid_prod=(CY)/(1000*pond_vol)); Co_co_n_locations_T_no_co_nd); Lipid_prod=(CY)/(1000*pond_vol)]; Lipid_prod=(CY)/(1000*pond_vol)]; Lipid_prod=(CY)/(1000*pond_vol)]; Lipid_prod=(CY)/(1000*pond_vol)]; Lipid_prod=(CY)/(1000*pond_vol)]; Lipid_prod=(CY)/(100*pond_vol)]; Lipid_prod=(CY)/(100*pond_vol)]; Lipid_prod=(CY)/(100*pond_vol)]; Lipid_prod=(CY)/(100*pond_vol)]; Lipid_prod=(CY)/(100*pond_vol)]; Lipid_prod=(CY)/(100</pre>	1 2 3 - 4 - 5 - 6 - 7 - 8 - 9 - 10 - 11 12 13	<pre>function [light_Energy,Gas_pump_power,water_pump_power, *#eml light_Energy=(0.22*PAR*pondarea/T_litres); T_light_Energy=((light_Energy*pondarea*T_no_pond))); Vol_carbon_column=(3.142*((cc_tube_dia/2)^2)*cc_tube_H). Gas_pump_power=(Gas_discharge*etha*cc_tube_H/Vol_carbon T_gas_pump_power=(Gas_pump_power*T_no_pond)/(10^6); water_pump_power=((Cd*Rho_1*pond_depth*pond_width*(pond T_water_pump_power=(water_pump_power*T_no_pond)/(10^6); T_power=(T_light_Energy+T_gas_pump_power+T_water_pump_po </pre>

Figure 8: Coding in Embedded MATLAB Subsystems for Carbon Sequestration Model

Figure 9: MATLAB-Simulink Model for Carbon Sequestration-with the Executed Results

Conclusion:

Micro Bio-Algal production systems with thermal power plants depends on several factors that were taken into account in this analysis: (1) PAR; (2) algal growth rate; (3) algal concentration in growth system; (4) energy requirement and, most importantly for India, (5) cost of the growth system. Based on current algal productivities alone, a large fraction of the CO₂ from the power plant could potentially be sequestered. Availability of PAR, favourable climatic conditions, adequate land demonstrates that raceway ponds may be the best method to cultivate algae. The assumptions made for this analysis are based on current techniques, productivities, and processes for mass algal cultivation. The recommendations revealed by this assessment are corroborated by the fact that, presently, nearly all algal biomass production facilities are operated in temperate or tropical locations. Despite the fact that algal biofuels may not yet be economically achievable in northern India, algae show great promise for the remediation of CO_2 point sources. Integrated CO_2 sequestration with power plants will, nonetheless, be an important step toward positive publicity of both CO_2 reduction and microalgal biomass production. Although biofuel production from microalgae in India is currently economically unfavorable, algae cultivation remains a very realistic goal provided certain key barriers to commercialization can be overcome. We believe that this work is best applied as a guide for areas of research and improvement required to allow algal production in conjunction with thermal power plant to become fully viable.

References:

- 1. NREL Technical Report on "A Look Back at the U.S. Department of Energy's Aquatic Species Program: Biodiesel from Algae" NREL/TP-580-24190.
- 2. Brennan, L., Owende, P., 2010. Biofuels from microalgae a review of technologies for production, processing, and extractions of biofuels and co-products. Renew. Sustain. Energy Rev. 14, 217–232.
- 3. Balachandran Ketheesan et al,"Feasibility of microalgal cultivation in a pilot-scale airlift-driven raceway reactor"; Journal of Bioresource Technology; 108 (2012) 196–202
- 4. T. M. Wrigley, R. Richels, and J. A. Edmonds, Economic and environmental choices for the stabilization of atmospheric CO₂ concentration, Nature, vol. 379, pp. 240–243, 1996.
- 5. Liu,B.Y.H., Jordan, R.C., 1960. The interrelationship and characteristic distribution of direct, diffuse and total solar radiation. Solar Energy 7, 53–65.
- 6. E.Molina al. "Photobioreactors; light regime, mass transfer, and scale-up". Journal of Biotechnology. Vol-70, no1-3,pg;231-247,1999
- 7. Duffie, J.A., Beckman, W.A., 1980. Solar Engineering of Thermal Processes. Wiley, New York, p. 762
- 8. Rudras et al.."Sustainable algae Biodisel Production in cold climates. International Journal of chemical engineering". Article Id 102179, 2010
- 9. E.Molina al. "Photobioreactors; light regime, mass transfer, and scale-up". Journal of Biotechnology. Vol-70, no1-3,pg;231-247,1999
- David Michael Wogan ."An Integrated Resource and Biological Growth Model for Estimating Algal Biomass Production With Geographic Resolution", Master of Science Thesis report-The University of Texas at Austin, December 2010.
- 11. Benemann, J.R., CO₂ Mitigation with Microalgae Systems. Energy Convers. Mgmt, 1997. 38: p. 475-479.
- 12. David Michael Wogan ."An Integrated Resource and Biological Growth Model for Estimating Algal Biomass Production With Geographic Resolution", Master of Science Thesis report-The University of Texas at Austin . December 2010.
- 13. Dunn, I.J., E. Heinzle, and J. Ingham, Biological Reaction Engineering. 2003, Weinheim: Wiley-VCH.
- 14. Goldman, J.C., Outdoor algal mass cultures--II. Photosynthetic yield limitations. Water Research, 1979. 13(2): p. 119-136.
- 15. Shah,Y.,Kelkar,B.,Delker,W.,1982.Design parameters estimations for bubble columnreactors. AIChEJ. 28(3), 353–379.
- 16. Emmert, R., Pigford, R., 1963. Section 14, Gasabsorption and solvent extraction. In: Perry's Chemical Engineer s'Handbook. McGraw-Hill, New York, p. 14-4.
- 17. Pirt,S.J.,1975.Principles of Microbe and Cell Cultivation. Blackwell Scientific Publications Ltd., Oxford.

- RonPutt, Manjinder Singh, Senthil Chinnasamy, K.C.Das, "An efficient system for carbonation of high-rate algaepond water to enhance CO₂ mass transfer", Bioresource Technology 102(2011) 3240– 3245.
- 19. Becker, E.W., 1994. Microalgae: Biotechnology and Microbiology, firsted. Cambridge University Press, New York.
- 20. Herzog, H., "What future for carbon capture and sequestration, Environmental Science and Technology", 35, 148A-153A, 2006.
- 21. B.Ketheesan, N.Nirmalakhandan, "Development of an new airlift-driven raceway reactor for algal cultivation", Applied Energy: 88(2011)3370–3376
- 22. Anderson RA.Algal culturing techniques.Elsevier Academic Press;2005
- 23. Water pollution control federation and ASCE. Design and construction of sanitary and storm sewers. WPCF manual of practicen o9. Washington;1970.
- 24. Rouse H. Elementary mechanics of fluids. NewYork: John Willey and Sons;1946.
- 25. Yan Li et al. "Utilization of carbon dioxide from Coal-fired power plant for the Production of valueadded products", Thesis report for Design Engineering of Energy and Geo-Environmental Systems Course (EGEE 580), April 27, 2006
- 26. Balachandran Ketheesan, Nagamany Nirmalakhandan, "Feasibility of microalgal cultivation in a pilotscale air lift- driven raceway reactor", Bioresource Technology 108(2012)196–202.
