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Abstract: Model Predictive Control (MPC) schemes are now widely used in process industries for the control
of key unit operations. In this paper, a state estimation based model predictive controller for nonlinear process
has been proposed. The model predictive controller is designed by considering a state space model and an
extended Kalman filter to predict the future behaviour of the system. The efficacy of the proposed MPC scheme
has been demonstrated by conducting experimentalstudies on a continuous stirred tank reactor, a SISO
system.The analysis of the extensive dynamic closed loop studies revealed that, the MPC scheme formulated
produces satisfactory performance for servo operation.
Key words – Model Predictive Control, State Estimation, Extended Kalman Filter, Continuous Stirred Tank
Reactor.

I. Introduction

Model Predictive Control is an increasingly significant and popular control approach because of its use of a
possibly nonlinear multivariable process model and its ability to handle constraints on inputs, states and
outputs. It uses open loop constrained optimization of finite horizon control criteria in a receding horizon
approach. A model is used to predict the future behaviour of the system up to the horizon, starting from its
current state and a constrained optimization based on the prediction yields an optimal open loop control
sequence over the complete horizon. Only the first element in this sequence is applied to the plant. New
measurements available at the next sample time permit the calculation of an updated initial state value and the
optimization is then resolved [7]. As it is known, all the states of a system are not measurable in practice, state
estimation is presented. When the prediction of future behaviour is done based on state estimation, there exist
many advantages which include accurate result, suppression of noise, increased robustness and the estimator
acts as model based filter. In state estimation based MPC, the current control action is obtained online by
solving a finite horizon open loop optimal control problem from the state estimate of the system.

The need to achieve control of nonlinear process has led to more general MPC formulation. The survey on
nonlinear control of chemical processes by Bequette [3] summarizes different NMPC algorithms. The
advantage of using state estimation in model predictive control has been reported by Ricker [4].

The main contribution of this paper is to demonstrate the development of model predictive control scheme
for a continuous stirred tank reactor using extended Kalman filter [5]. The organisation of this paper is as
follows. Section 2 discusses about the modeling of CSTR. Section 3 presents the conventional MPC algorithm.
Section 4 describes the state estimation based MPC. Extensive experimental results and analysis are presented
in Section 5 and the conclusion in Section 6.

II. Model Identification of Cstr

System Identification means to find a function that will map the input and output time series on to the
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parameter space such that some objective function   is satisfied.The knowledge of the model is
necessary for the design of soft sensing technique and model based control system.

System identification is an experimental approach [2] for determining the dynamic model of a system.
It includes four steps:

i. Input/output data acquisition under an experimentation protocol
ii. Selection or estimation of the “model” structure

iii. Estimation of the model parameters
iv. Validation of the identified model (structure and values of the parameters)

A complete identification operation must necessarily comprise the four stages indicated above. The
specific methods used at each stage depend on the type of model desired (parametric or non-parametric,
continuous-time or discrete-time) and on the experimental conditions (for example: hypothesis on the noise,
open loop or closed loop identification). The validation is the mandatory step to decide if the identified model is
acceptable or not.As there does not exist a unique parameter estimation algorithm and a unique experimental
protocol that always lead to a good identified model, the models obtained may not always pass the validation
test. In this case, it is necessary to reconsider the estimation algorithms, the model complexity or the
experimental conditions. System identification should be then considered as an iterative procedure as illustrated
in Figure 1.

Figure 1.Flow diagram of System Identification

The system shown in Figure 2 was taken for system identification. The input was the coolant flow rate.
The output variable was the temperature of the reactor.

Figure 2. SISO process
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The Input and output data were collected for the above process using Compact RIO as shown in Figure
3. The average feed flow was maintained as constant value. The temperature data was collected till it reaches
steady  state.  A  step  change  was  given  in  coolant  flow  rate  and  again  the  temperature  was  measured  once  it
reaches steady state. All the values were obtained in terms of       (1-5) V in order to normalize them within a
single unit range.

Figure 3. View of Sample Data Collection Using Compact RIO Modules

The parametric model approach was used.  Recursive least square (RLS) method was used for
estimating the parameters. After the completion of parameter estimation, results were validated against a new
set of data for same operating condition. The Actual plant output vs. Identified Model response is shown in
Figure 4.

Figure 4. Comparison of Open loop response of Actual plant and Identified Model

Thus the  Mathematical model of CSTR real process was obtained in the form of discrete state space
form and is shown here.

                                                                       (1)
                                                                                                           (2)

where,
u(k) is  Coolant flow (manipulated variable)
y(k)  is Temperature (output variable)

III. Conventional Mpc Algorithm

The model predictive control is a strategy that is based on the explicit use of some kind of system
model to predict the controlled variables over a certain time horizon, the prediction horizon. The control
strategy can be described as follows [7]:
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1. At each sampling time, the value of the controlled variable y(t+k) is predicted over the prediction horizon
k=1,……N2. This prediction depends on the future values of the control variable u(t+k) within a control
horizon k=1,…Nu, where Nu≤N2. If Nu<N2, then u(t+k)=u(t+Nu), k=Nu+1,…N2.

2. A reference trajectory r(t+k), k=1,….N2 is defined which describes the desired system trajectory over the
prediction horizon.

3. The vector of future controls u(t+k) is computed such that a cost function, usually a function of the errors
between the reference trajectory and the predicted output of the model, is minimised.

4. Once minimisation is achieved, the first optimised control action is applied to the plant and the plant
outputs are measured. Use this measurement of the plant states as the initial states of the model to
perform the next iteration.

Steps 1 to 4 are repeated at each sampling instant; this is called receding horizon strategy.

The above steps are can be expressed by the following equations:

subject to

where k is the time step, u(k) is the control vector at time k,  and x(k) are the desired output (reference)
and predicted output vector of the model at time k respectively, p is the prediction time horizon. The block
diagram of a model predictive controller is shown in Figure 5.

Figure 5.Block Diagram of MPC controller

As the control variables in a MPC controller are calculated based on the predicted output, the model
thus needs to be able to reflect the dynamic behaviour of the system as accurately as possible.

IV. State Estimation Based Mpc

A. Block Diagram

Conventional MPC techniques are based on the use of linear models. The need to achieve tighter
control of strong non-linear process has led to more general MPC formulation in which nonlinear dynamic
model is used for prediction [1]. When the prediction of future behaviour is done based on state estimation,
there exist many advantages which include accurate result, suppression of noise, increased robustness and the
estimator acts as model based filter [4]. In state estimation based MPC, the current control action is obtained
online by solving a finite horizon open loop optimal control problem from the state estimate of the system.
Figure 6 shows the block diagram of state estimation based MPC.
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Figure 6.Block Diagram of State Estimation (Virtual Feedback) Based MPC

B. Extended Kalman Filter

In this section, the EKF algorithm to estimate the internal states and future behaviour of the system has
been proposed. The well-known Kalman filter solves the state estimation problem in a stochastic linear system
[8]. The extended Kalman Filter (EKF) is probably the most widely used nonlinear filter. For nonlinear
problems, the Kalman Filter is not strictly applicable since linearity plays an important role in its derivation and
performance as an optimal filter. The EKF attempts to overcome this difficulty by using a linearized
approximation where the linearization is performed about the current state estimate [8].The basic framework for
the EKF involves the estimation of the state of a nonlinear dynamic system given by (3) and (4)

                                     (3)
(4)

In the above equation, x(k)represents the unobserved state of the system, u(k) is a known exogenous
input and y(k) is the only observed signal. We have assumed w(k)  and v(k) as zero mean Gaussian white noise
sequences with covariance matrices Q and R respectively. The symbols F and H represent an n-
dimensional function vector and are assumed known. EKF involves the recursive estimation of the mean and
covariance of the state under maximum likelihood condition. The function Fcanbe used to compute the
predicted state from the previous estimate and similarly the function H can be used to compute the predicted
measurement from the predicted state. However, F and H cannot be applied to the covariance directly. Instead a
matrix of partial derivatives (Jacobian) is computed at each time step with current predicted state and evaluated.
This process essentially linearizes the non-linear function around the current estimate.

The predicted state estimates are obtained as

         (5)

The covariance matrix of estimation errors in the predicted estimates is obtained as

                      (6)
where is nothing but Jacobian matrix of partial derivatives of F  with respect to x

                      (7)

Note that the extended Kalman filter (EKF) computes covariances using the linear propagation. The
measurement prediction, computation of innovation and covariance matrix of innovation are as follows

                                   (8)
         (9)

                     (10)

where C(k) is the Jacobian matrix of partial derivatives of H with respect to x.
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                      (11)

The Kalman gain is computed using the following equation

                      (12)

The updated state estimates are obtained using the following equation

                                   (13)

The covariance matrix of estimation errors in the updated state estimates is obtained as

(14)

C. Model Predictive Controller Based on EKF

The concept of model predictive control involves the repeated optimization of a performance objective
such as (15) over a finite horizon extending up to a prediction horizon N2. The control variable u(k+j), over the
control horizon Nu , is obtained from solving the cost function [6].

(15)

is the predicted outputs vector,  is  the reference and  is the increment of input vectors. R
and Q are the weighting matrices and N2,Numust be tuned as controller parameters.

The controller is based on a nonlinear state space model that utilizes an extended Kalman filter (EKF)
for estimate of the system states. By using the estimated state variables of the system derivation of some
equations, predicted outputs are obtained. The predicted output at j step ahead is as (16).

        (16)

By applying the expectation function to (16), we have:

                 (17)

is vector including one step ahead to N2 step ahead predicted outputs.

                 (18)

Closed form of the above equation is as (19).

  (19)

  (20)

The estimates of the states are computed using extended Kalman filter and other parameters are defined as
follows:
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G, H are block lower triangular matrices that nonzero elements are ,  and

 is a vector which its jth element would be

By considering the performance index,

                                            (21)

And by solving control law is obtained as in (22):

(22)

The response of this controller is appropriate if model of the system was well known. But in general
case, uncertainties of the model may cause to bad behaviour of the controller and a robust controller must be
designed. Also, the MPC schemes have been implemented in a moving horizon framework i.e. only the first
move u(k|k) is implemented on the plant and the optimization problem is reformulated at the next sampling
instant based on the updated information from the plant [1].

V. Experimental Results and Analysis

   MPC scheme for CSTR has been developed with the sampling time of 1second, prediction horizon of
N2 = 10, and control horizon of Nu = 2. The error weighting matrix and the controller weighting matrix used in
the MPC formulation are and . The following constraint on the manipulated inputs (inflow
rates) is imposed i.e. 1≤ u≤5.

A. Closed loop experimental  study of CSTR

In order to access the tracking capability of the proposed EKF based MPC scheme, a set point variation is
introduced in the temperature.

a. Closed loop response: Conventional MPC

Figure7 and Figure8 show the closed loop response of the system with conventional MPC and the
corresponding variation in the control inputs respectively.

Figure 7.Closed Loop Response - Conventional MPC
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Figure 7 shows the deviation of the output from the set point due to measurement noise in the system.

Figure 8.Control Input – Conventional MPC

b. Closed Loop response: State Estimation Based MPC

Figure 9 andFigure 10 show the closed loop response of the system with state estimation based MPC
and the corresponding variation in the control inputs respectively.

Figure 9.Closed Loop Response – State Estimation based MPC

By comparing Figure 7 and Figure 9,  it  can be seen,  the state  estimation based MPC filters  the noise
more effectively and the system settles with less offset than conventional MPC.

Figure 10.Control Input – State Estimation based MPC

From Figure8 andFigure 10 it can be clearly seen that the control inputs follow the constraints in both
the cases.

B. Performance index

Integral Square Error (ISE) is used as performance index to evaluate the performance of conventional
and state estimation based MPC. Table 1 shows the comparative study.
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Table 1 Comparison between conventional MPC and state estimation based MPC

Controller/
Performance index ISE

Conventional MPC 23875
State Estimation based MPC 15204.3

From Table 1, it is clear that the state estimation based MPC shows minimum ISE than the
conventional MPC. Moreover it shows that the state estimation based MPC has better noise suppressing
capability and set point tracking than conventional MPC.

VI. Conclusion

In  this  paper,  a  MPC scheme  based  on  EKF has  been  formulated  and  applied  to  CSTR.  The  EKF is
used to predict the future behaviour of the system. Further, a comparative experimental study has been done
between conventional MPC and state estimation based MPC formulations. The performance of both the
controllers has been evaluated based on the performance index ISE. From the extensive experimental studies on
CSTR and the performance index, it can be inferred that state estimation based MPC is able to achieve
satisfactory performance following the constraints and can suppress noise.
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