Crystal structure analysis of (E)-5,5-dimethyl-3-(4-methylstyryl) cyclohex-2-enone

T. Srinivasan ${ }^{1}$, G. Senthilkumar ${ }^{2}$, A. Vadivel ${ }^{2}$, H. Manikandan ${ }^{2}$, D.Velmurugan ${ }^{1 *}$
${ }^{1}$ CAS in Crystallography and Biophysics, University of Madras, Guindy Maraimalai Campus, Chennai-600025, India
${ }^{2}$ Department of Chemistry, Annamalai University, Annamalainagar-608002, Tamilnadu, India
*Corres.author: shirai2011@gmail.com

Abstract

The cyclohexanone compound crystallizes in monoclinic $\mathrm{P} 2_{1} / \mathrm{n}$ space group with four molecules in the asymmetric unit. Crystal data were collected using BRUKER SMART APEX II CCD X-ray diffractometer. The structure was solved by direct methods and refined on F^{2} by full-matrix least-squares procedures to the final R_{1} of 0.048 using SHELXL programs.

Key Words: cyclohexanone, crystal structure.

Introduction

Cyclohexanone is an aliphatic cyclic ketone. Cyclohexanone derivatives have potent pharmacological activity in the treatment of a broad spectrum of medical conditions ${ }^{1}$. The cyclohexanone moiety constitutes an important structural feature in several anti-inflammatory, analgesic, local anesthetic and antihistaminic drugs ${ }^{2}$. In view of its potential applications, the crystal structure determination of the cyclohexanone compound was carried out.

Experimental

X-ray Structure Determination

Single crystal of the compound suitable for x-ray diffraction was obtained by slow evaporation method. Three dimensional intensity data were collected on a Bruker ${ }^{3}$ SMART APEX CCD Diffractometer using graphite monochromatized Mo-K α radiation ($\lambda=0.71073 \AA$) at CAS in Crystallography and Biophysics, University of Madras, Chennai. The structure was solved by direct methods and refined on F^{2} by full-matrix least-squares procedures using the SHELXL programs ${ }^{4}$. All the non-hydrogen atoms were refined using isotropic and later anisotropic thermal parameters. The hydrogen atoms were included in the structure factor calculation at idealized positions by using a riding model, but not refined. Images were created with ORTEP-3 ${ }^{5}$. The crystallographic data for the compound are listed in Table 1.

Table 1: Crystal data and structure refinement of the titled compound

Compound	Parameters
Empirical formula	$\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{O}$
Formula weight	240.33
Temperature(K)	293(2)
Wavelength(\AA)	0.71073
Crystal system, Space group	Monoclinic $\mathrm{P} 2_{1} / \mathrm{n}$
```Unit cell dimensions \(\mathrm{a}(\AA \mathrm{A})\) b(A) c \((\AA)\) \(\beta\left({ }^{\circ}\right)\)```	$\begin{array}{\|l} 13.839(5) \\ 6.017(5) \\ 17.808(5) \\ 104.896(5) \end{array}$
Volume( $\AA^{3}$ )	1433.0(2)
$\mathrm{Z}, \mathrm{D}_{\mathrm{cal}}\left(\mathrm{Mgm}^{-3}\right)$	4, 1.114
Absorption coefficient ( $\mathrm{mm}^{-1}$ )	0.067
$\mathrm{F}(000)$	520
Crystal size(mm)	$0.30 \times 0.25 \times 0.20$
Theta range for data collection( ${ }^{\circ}$ )	1.67 to 28.35
Limiting indices	$\begin{aligned} & -17<=\mathrm{h}<=18, \\ & -7<=\mathrm{k}<=8, \\ & -23<=1<=17 \end{aligned}$
Reflections collected / unique	12706 / 3549
R(int)	0.0310
Refinement method	Full-matrix least-squares on $\mathrm{F}^{2}$
Data / restraints / parameters	3549 / 0/167
Goodness-of-fit on $\mathrm{F}^{2}$	1.028
Final R indices [I>2 ${ }^{\text {(I) }}$ ]	$\begin{aligned} & \mathrm{R} 1=0.0481, \mathrm{wR} 2= \\ & 0.1371 \end{aligned}$
R indices (all data)	$\begin{aligned} & \mathrm{R} 1=0.0662, \text { wR2 }= \\ & 0.1558 \\ & \hline \end{aligned}$
Largest diff. peak and hole(e. $\AA^{-3}{ }^{-3)}$	0.194 and -0.169

## Synthesis of the compound

A mixture of isophorone $(0.01 \mathrm{~mol})$, 4-methyl benzaldehyde $(0.01 \mathrm{~mol})$ and sodium hydroxide solution ( $10 \mathrm{ml}, 10 \%$ ) in ethanol ( 25 ml ) was stirred at room temperature until the starting material disappeared. The resulting mixture was poured into crushed ice and the precipitate was filtered off, dried and recrystallized from ethanol. Yield: $96 \%, \mathrm{Mp}=87^{\circ} \mathrm{C}$.

## Results and Discussion

The cyclohexene ring ( $\mathrm{C} 1-\mathrm{C} 6$ ) adopts an envelope conformation with atom C 3 as the flap: puckering parameters ${ }^{6}$ are $\mathrm{Q}=0.443(2) \AA, \theta=53.3(2)^{\circ}$, and $\varphi=110.6(2)^{\circ}$. Its mean plane makes a dihedral angle of 6.00 (1) ${ }^{\circ}$ with the benzene ring (C9-C14). The methyl groups C16 and C17 attached with the cyclohexene ring deviate by -0.2358 (3) $\AA$ and 1.8176 (3)A, respectively. The methyl group C15 attached with the benzene ring deviates by 0.0080 (3) $\AA$. The molecule adopts an extended conformation about $\mathrm{C} 7=\mathrm{C} 8$ bond which is evident from the torsion angle (C5-C6-C8-C9=-177.23(2) ${ }^{\circ}$ ). The crystal packing is stabilized by C4—H4A $\cdots \mathrm{O} 1$ and C13-H13 $\cdots$ O1 hydrogen bonds which form inversion dimers (Fig $2 \&$ Table 2). The selected bond lengths and angles are listed in table 3 and 4, respectively.

Table 2: Hydrogen-bond geometry [ $\AA$ ]

Distance ( ${ }_{\text {A }}$ )				Angle ( ${ }^{\circ}$ )
D-H...A	D-H	H...A	D...A	D-H...A
C13-H13...O1 ${ }^{\text {i }}$	0.93	2.52	3.421 (3)	163
C4-H4A...O1 ${ }^{\text {ii }}$	0.97	2.59	3.458 (3)	150

Symmetry code: i) 1-x,-y,1-z ii) x,1+y,z


Fig 1. The molecular structure of the titled compound, with atom labeling. Displacement ellipsoids are drawn at the $30 \%$ probability level.


Fig 2. The crystal packing of the titled compound forming inversion dimers viewed down $b$ axis. The hydrogen bonds are shown as dashed lines (see Table 2 for details; $\mathbf{H}$-atoms not involved in $\mathbf{H}$-bonds have been excluded for clarity).

Table 3: Selected Bond lengths ( $\AA$ )

Atom	Length
$\mathrm{C}(1)-\mathrm{O}(1)$	$1.224(2)$
$\mathrm{C}(1)-\mathrm{C}(6)$	$1.455(2)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.493(2)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.528(2)$
$\mathrm{C}(3)-\mathrm{C}(17)$	$1.525(2)$
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.528(2)$
$\mathrm{C}(3)-\mathrm{C}(16)$	$1.529(2)$
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.501(2)$
$\mathrm{C}(5)-\mathrm{C}(6)$	$1.347(2)$
$\mathrm{C}(5)-\mathrm{C}(7)$	$1.453(2)$
$\mathrm{C}(7)-\mathrm{C}(8)$	$1.333(2)$
$\mathrm{C}(8)-\mathrm{C}(9)$	$1.463(2)$
$\mathrm{C}(9)-\mathrm{C}(14)$	$1.392(2)$
$\mathrm{C}(9)-\mathrm{C}(10)$	$1.393(2)$
$\mathrm{C}(10)-\mathrm{C}(11)$	$1.383(2)$
$\mathrm{C}(11)-\mathrm{C}(12)$	$1.380(2)$
$\mathrm{C}(12)-\mathrm{C}(13)$	$1.384(2)$
$\mathrm{C}(12)-\mathrm{C}(15)$	$1.507(2)$
$\mathrm{C}(13)-\mathrm{C}(14)$	$1.379(2)$

Table 4: Selected Bond angles $\left({ }^{\circ}\right)$

Atom	Angle
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(6)$	$121.56(1)$
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	$121.51(1)$
$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(2)$	$116.91(1)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$113.78(1)$
$\mathrm{C}(17)-\mathrm{C}(3)-\mathrm{C}(2)$	$109.69(1)$
$\mathrm{C}(17)-\mathrm{C}(3)-\mathrm{C}(4)$	$110.03(1)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$108.94(1)$
$\mathrm{C}(17)-\mathrm{C}(3)-\mathrm{C}(16)$	$109.99(1)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(16)$	$109.32(1)$
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(16)$	$108.84(1)$
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(3)$	$114.58(1)$
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(7)$	$119.81(1)$
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(4)$	$120.26(1)$
$\mathrm{C}(7)-\mathrm{C}(5)-\mathrm{C}(4)$	$119.90(1)$
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(1)$	$123.42(1)$
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(5)$	$126.55(1)$
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	$127.08(1)$
$\mathrm{C}(14)-\mathrm{C}(9)-\mathrm{C}(10)$	$117.03(1)$
$\mathrm{C}(14)-\mathrm{C}(9)-\mathrm{C}(8)$	$123.34(1)$
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(8)$	$119.62(1)$
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(9)$	$121.22(1)$
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(10)$	$121.50(1)$
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	$117.44(1)$
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(15)$	$121.44(1)$
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{C}(15)$	$121.12(1)$
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(12)$	$121.62(1)$
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(9)$	$121.18(1)$

## Conclusion

The crystal structure analysis of a novel cyclohexanone compound was studied using x-ray diffraction method. In the compound, the crystal packing is stabilized by intermolecular C-H...O hydrogen bonds.

## Acknowledgments

The authors thank the TBI X-ray facility, CAS in Crystallography and Biophysics, University of Madras, Chennai for data collection. The authors also thank the UGC (SAP-CAS) for the departmental facilities. TS thanks the DST Inspire program for fellowship.

Crystallographic data for the structure reported here have been deposited with CCDC (Deposition No's. CCDC: 1004465). These data can be obtained free of charge via http: // www . ccdc. cam. ac. uk/ conts/ retrieving.html or from CCDC, 12 Union Road, Cambridge CB2 1EZ, UK, E-mail: deposit @ccdc.cam.ac.uk.

## References

1. Puetz, C., Buschmann, H. \& Koegel, B. (2003). US Patent Appl. No. 20030096811.
2. Rajveer, C., Stephenrathinaraj, B., Sudharshini, S., Kumaraswamy, D., Bhupendra, S. \& Choudhury, P. K. (2010).Res. J. Pharm. Bio. Chem. Sci.1, 99-107.
3. Bruker (2008), APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, US.
4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
5. Farrugia L. J., J. Appl. Cryst., (1997), 30, 565.
6. Cremer, D. \& Pople, J. A. (1975).J. Am. Chem. Soc.97, 1354-1358.
