

International Journal of ChemTech Research CODEN (USA): IJCRGG ISSN : 0974-4290 Vol.6, No.5, pp 2854-2865, Aug-Sept 2014

Experimental (FT-IR & FT - Raman) and Theoretical Investigation, Electronic Properties of Quinoxaline

C.C.Sangeetha¹*, R.Madivanane², V.Pouchaname³, R.Vijaya Prasath⁴

¹Department of Physics, Manonmaniyam Sundaranar University,Tirunelveli,Tamilnadu,India.

²Department of Physics, Bharathidasan Government College for Women, Puducherry, India.

³Department of Chemistry, Bharathidasan Government College for Women, Puducherry, India.

⁴Department of Physics, Sri Manakula Vinayagar Institute of Tech, Puducherry,India.

*Corres. author: carosangee@gmail.com

Abstract: The present work deals the structural and vibrational analysis of Quinoxaline molecule which is pharmaceutically and industrially important heterocyclic compound. The FTIR and FT-Raman spectra of Quinoxaline have been measured in the region of 0-3700 cm⁻¹ and UV-Visible spectrum also was recorded. The computations were carried out by employing DFT/B3LYP method with 6-311++G(d,p) basis set. The first order hyperpolarizability and its related properties (α_0 , μ and $\Delta \alpha$) were also calculated by the finite field approach. The HOMO-LUMO energy gap, chemical hardness, corrosion inhibition were studied. The thermodynamic functions of the title compound have been performed. The observed and calculated wave numbers are found to be in good agreement with the experimental values. The experimental spectra also coincide with the theoretically constructed spectra. From our study we find that the title compound is a good NLO material and posses corrosion inhibition character.

Keywords: FT-IR & FT – Raman, Electronic Properties of Quinox aline.

1. Introduction

The quinoxaline is a nitrogenous heterocyclic compound which is widely used in various industries like pharmaceuticals, dyes etc [1]. In pharmaceutical fields they were used as antibiotics such as echinomycin, levomycin and antileutin [1-7] and also play an effective role as anti-virus, anti- HIV and anti-depression as the oxidation of Nitrogen atoms of quinoxaline ring significantly increases the biological activity of the compound. Quinoxaline combination of 1,4–di-N-Oxide inhibits TB progression with 99 to 100% efficiency. The cyano-substituted quinoxaline di-N-Oxide is a potential antitumor agent which selectively kills hypoxic cells [8]. Quinoxaline derivatives recently receive more and more attention of researchers since they play important role on corrosion efficiency [9-12].Nowadays FTIR and FT-Raman spectroscopy combined with quantum chemical computations has been recently used as an effective tool in the vibrational analysis of the drug molecules [13]. Literature survey reveals that a good amount of work has been studied on the derivatives of Qunioxaline not in quinoxaline molecule. Hence we have chosen pharmaceutically important molecule quinoxaline to study vibrational behavior, NLO activity, HOMO-LUMO analysis, chemical hardness, corrosion inhibition, thermodynamic properties and Mulliken charge analysis using computation method DFT/B3LYP . UV spectra

also calculated. The all computational data of the title compound is found to be in good agreement with experimentally observed spectral data.

2. Experimenatal Details

The compound quinoxaline was purchased from Sigma Aldrich Chemicals, USA and used as such to record the FTIR, FT Raman and UV – Visible spectra. The FTIR spectrum of quinoxaline was recorded by KBr pellet on a Burkerr 1 FS 66 v Spectrometr equipped with a global source, Ge/KBr beam splitter and a TGs detector. The FT–Raman spectrum of the compound was also recorded in the range 0-3700 cm⁻¹ using the same instrument with FRA 106 Raman module equipped with Nd: YAG laser source. The frequencies of all sharp bands are accurate to 2 cm⁻¹. The absorption spectrum of the compound was also recorded with the shimadzu UV – Visible spectrometer. The band width on half h eight is 3.0nm.

The combination of DFT calculations of chemical shifts, frontier molecular orbital energies and harmonic vibrations with UV –Visible and IR/ Raman experimental parameters, respectively have been accepted technique to gather insight into the complete molecular structure. The novelty of our work resides in correlating the theoretically predicted optimized geometrical parameters, Harmonic vibrations, Thermodynamic properties of quinoxaline with experimental FTIR, FT Raman and UV – Visible data for the first time.

3. Computational Details:

Using the version 8 of Gaussian 09W (revision B.01) program [8], the DFT calculation of the title compound was carried out on Intel Core2Duo/2.20 GHz processor. Becke-3-Lee-Yang-Parr (B3LYP) functional [14-15] were used to carry out ab initio analysis with the standard 6-311 ++G (d,p) basis sets. For the simulated IR and Raman spectra pure Lorentzian band shapes with the band width of 10 cm⁻¹ was employed using the Gabedit Version 2.32 [16]. The animation option of the Gauss view 05 graphical interface for Gaussian program was employed for the proper assignment of the title compound and it was also used to visualize vibrational modes of the title compound and to check whether the mode was pure or mixed[17-24]. The idea of using multiple scale factors in the recent literature, had been adopted for this study and it minimized the deviation between the computed and the experimental frequencies. Vibrational frequencies are scaled with the scaling factors 0.99 for B3LYP to account for systematic errors caused by basics set incompleteness neglect of electron correlation and vibrational anharmonicity. After scaled with scaling factor, the deviation from the experiments is less than 10cm⁻¹ with a few exceptions. The mean polarizability properties of quinoxaline were obtained from the theoretical calculations to show the NLO property of the molecule. The thermodynamic properties of quinoxaline such as heat capacity, entropy, and enthalpy were investigated for the different terms from the vibrational frequency calculations of title molecule. The energy of highest occupied molecular orbit (E HOMO) and the energy of Lowest unoccupied Molecular Orbital (E_{LUMO}) the dipole moment (μ), the ionization potential (I), the electron affinity (A), the electron negativity (X), the global hardness (η) were calculated.

4. Result and discussion:

4.1 Molecular geometry

The optimized structural parameters such as bond length, bond angle and dihedral angle for the energetically preferred geometry of quinoxaline determined by B3LYP method with 6-311++G(d,p) basis are presented in Table 1.The schematic optimized structure of quinoxaline along with the numbering is shown in Fig1.The maximum number of potentially active observable fundamentals of non linear molecule which contains N atoms is equal to (3N-6) apart from three translational and three rotational degrees of freedom [25]. From the table1, we find that if the electronegativity of the central atom decreases, the bond angle decreases. All the dihedral angles approaches $\pm 180^{\circ}$ or 0° which indicates that the optimized structure is non planar. The bond lengths between carbon and nitrogen atoms are lesser than the remaining bonds may be due to the influence of two nitrogen atoms on the molecular structure.

Fig 1 : The molecular structure of quinoxaline

Table 1: Optimized geometrical parameters of quinoxaline obtained from B3LYP (6-311++G) density functional calculations.

Parameters	DFT(B3LYP) 6- 311++G(d,p)	Parameters	DFT(B3LYP) 6-311++G(d,p)	
Bond length (Å)		Bond angle (°)		
N1-C2	1.3126	C2-N1-C10	116.528	
N1-C10	1.3625	N1-C2-H11	122.5103	
C2-C3	1.4202	N1-C2-C3	117.5038	
C2-H11	1.0871	C3-C2-H11	119.9859	
C3-N4	1.3126	C2-C3-N4	122.5103	
С3-Н12	1.0871	C2-C3-12	119.9858	
N4-C5	1.3625	N4-C3-H12	117.5039	
C5-C6	1.417	C3-N4-C5	116.5278	
C5-C10	1.4293	N4-C5-C6	119.6601	
C6-C7	1.374	N4-C5-C10	120.9619	
С6-Н13	1.0835	C6-C5-C10	119.378	
C7-C8	1.4174	C5-C6-C7	119.9406	
C7-H14	1.0841	С5-С6-Н13	118.0434	
C8-C9	1.374	С7-С6-Н13	122.016	
C8-H15	1.0841	C6-C7-C8	120.6814	
C9-C10	1.417	C6-C7-H14	119.9583	
C9-H16	1.0835	C8-C7-14	119.3603	
		C7-C8-C9	120.6813	
		C7-C8-H15	119.3604	
		С9-С8-Н15	119.9583	
		C8-C9-C10	119.9405	
		C8-C9-H16	122.016	
		С10-С9-Н16	118.0434	
		N1-C10-C5	120.9617	
		N1-C10-C9	119.6602	
		C5-C10-C9	119.3782	

4.2 Vibrational and spectral analysis:

The distribution of 42 normal modes of Quinoxaline which have been performed on the recorded FT-IR and FT-Raman spectra based and the theoretically predicted wave numbers by DFT with B3LYP-6-311++G(d,p) basis sets are presented in Table 2. The calculated infrared and Raman wave numbers were well correlated with the intensities of the observed fundamental modes. The FTIR and FT-Raman spectra from both experimental and theoretical methods are shown in Fig 2.

Fig 2 (a): Experimental and Theoretical FTIR spectrum.

Fig 2 (b): Experimental and Theoretical FT Raman spectrum.

The aromatic compounds shows the presence of the C-H stretching vibrational around 3100-3000 cm⁻¹ range which is the characteristic region for the ready identification of C-H stetching vibrations [26]. C-H stretching vibrations are found in FTIR spectrum at 3128,3183,3190,3219 and in FT-Raman 3140,3155,3212 are shows good agreement with the observed wave numbers. C-H rocking vibration is found 754 cm⁻¹ in FT-Raman. The out of plane bending vibration of HCCH is observed in FT-Raman spectrum at 954 cm, this shows good agreement with the calculated wavenumber at 965cm. Similarly the HCCC out of plane bending vibrations are verified at 1030,1385,1418,1535,1609 cm⁻¹ in FTIR and in FT-Raman spectrum they were observed at 1611 cm⁻¹. The C-C bending vibrations computed at 170,182,412 and 535 cm⁻¹ by HF method shows an excellent agreement with the medium FT-IR band at 196,408 cm⁻¹ in FTIR and at 188,534 cm⁻¹ in FTIR are assigned to C-C-C in-plane bending and these assignments are in line with the earlier workers [27,28].

The identification of C–N stretching frequencies is a rather difficult task, since the mixing of vibrations is possible in this region. The C–N stretching vibration is usually a lie in the region 1400–1200 [29]. In our present study, the C–N stretching is observed at 12 60,1458,1494,1651 cm⁻¹ in FT-Raman, 1535, 1609 in FTIR spectrum respectively. The NCH bending vibrations at 1134 in FTIR and at 1167 in FTR shows good agreement with the theoretical values at 1147,1161 cm⁻¹. In our present study ring twisting vibrations were observed at 839 in FTIR and at 868,1009 cm⁻¹ in FTR. The theoretically scaled values of ring deformation exactly correlates with experimental observation in FTIR at 541,868 and at 975 cm⁻¹ in FTR.

_	Observe	ł		Calcul	ated frequer	nev	Assignment	
utio	frequency	a	By B3LVP/6-311++ $G(d,n)$		1 issignment			
l bra	in equency		Dy D D D T T (0, p)					
0.1								
	IR	RAMAN	Unscaled	Scaled	IR	Raman		
	ш	KAWAN	Unscaled	Scaleu	Intensity	Intensity		
1	196		170.3143	170.3143	0	0.2249	C-C bending	
2		188.945	182.7739	182.7739	5.8364	0.1108	C-C-C opb+ C-C bending	
3	400.828	399.172	399.0538	399.0538	5.4985	0.0097	C-C-C opb	
4	408.422		412.6808	408.554	10.8459	2.2479	C-C bending	
5	470.6		471.4394	471.4394	0	0.0059	C-C-C opb	
6	493.348		499.3005	494.3075	0.0206	0.01		
7		534.133	535.6624	524.9492	0.0003	13.4678	C-C bending	
8	541.18		544.0546	538.6141	0.1619	9.4107	Ring deformation	
9	608.775	604.209	618.3541	618.3541	3.0074	0.3762	Ring symmetry	
10	667.859	640.544	647.357	640.8834	0	0.2634	C-C-C ipb	
11		754.742	769.4534	754.0643	4.6035	42.9924	C=C sym str+C-H rocking	
12	761.123		771.8155	764.0973	63.6009	0.1193	C-C-C ipb+CCN bending	
13	801.557	801.459						
14		804.054	806.6692	798.6025	0	0.0241	C-C-C ipb+ CCN bending	
15	839.382	832.604	849.8184	832.822	0.6673	0.1129	Ring twisitng	
16		868.939						
17		868.939	883.6617	865.9885	32.7287	0.0818	Ring deformation	
18	871.051		885.8531	868.136	0	0.0514	Ring twisitng	
19		920.847						
20	954.449	954.588	965.6418	955.9854	15.3522	0.9975	OpbHCCH+ring 2 twisting	
21		959.778	978.8967	978.8967	0	0.2138	HCCC opb+ring 2 twisting	
22		975.351	982.3209	982.3209	3.2176	0.3916	Ring deformation	
23		1009.09	1000.4569	1000.457	0	0.3275	Ring twisitng	
24		1024.66	1029.1959	1025.144	1.2942	13.2719	CNC bending	
25	1030.27		1046.0655	1029.196	20.9056	14.6285	HCC scissoring+CC svm.str	
26	1134.31	1133.67	1147.5721	1136.096	10.2265	2.4233	NCH bend+CCH ipb	
27		1167.41	1161.2275	1161.228	1.7534	2.754	NCH bend+CCH ipb	
28		1258.25	1235.3329	1210.626	3.3739	1.9043	CCH ipb	
29	1262.16	1260.84	1236.6001	1236.6	0.4485	7.6888	C-N str+CCH ipb	
30	1289.83	1286.8	1289.8154	1289.815	0.2487	0.4605	CCH ipb	
31		1325.1	1324.514	1324.514	0.1067	2.6548	CCH ipb	
32	1385.5		1380.4913	1366.686	17.0836	88.9932	C-C sym .str+ CCH inb	
33	1418.09	1411.38	1410.5689	1410.569	2.6598	0.0571	C-C sym .str+ CCH inb	
34	1466.19	1458.09	1447.9596	1447.96	0.8657	131.989	C-N str+ CCH ipb	
35	1498.21	1494.43	1498.4896	1498.49	3.5819	1.927	C-N str+ CCH ibb	
26	1525.21		1500 (0(5	1500 (07	27.0265	2 (10)	C-C svm .str+ C-N str+ CCH	
36	1535.31		1529.6965	1529.697	27.9365	3.6196	ipb	
27	1600.26		1600 4720	1600 474	2 0 2 2	26 7202	C-C sym .str+ C-N str+ CCH	
57	1009.20		1000.4739	1000.474	2.833	30.7392	ipb	
38		1611.22	1603.7948	1603.795	0.0001	7.5639	CC sym.str	
39	1651		1653.1025	1620.04	0.3408	6.0503	C=C sym .str+ C-N str	
40	3128.01		3138.34	3106.957	3.0319	89.5823	C-H str	
41		3140	3155.0997	3155.1	42.3149	312.743	C-H str	
42		3155	3169.3004	3169.3	2.1492	53.6151	C-H str	
43	3183.23		3181.3589	3181.359	5.7419	124.307	C-H str	
44	3190.16		3193.7393	3193.799	8.6194	33.6584	C-H str	
45	3219.93	3212.58	3198.1736	3198.174	9.737	315.468	C-H str	

Table 2: Experimental and calculated B3LYP/6-311++G(d,p) level vibrational frequencies (cm⁻¹), IR Intensity (KM Mol⁻¹), Raman Activity (Å⁴amu⁻¹) of Quinoxaline.

sym .str -symmetric stretching, str-stretching, i pb-In plane bending, opb-Out of plane bending.

4.3 NLO Analysis

NLO is an important concept in current research scenario because of its vast applications in telecommunications, optical switching and signal processing [30-33]. The first-order hyperpolarizability (β_0) of this novel molecular system and the related properties (α_0 and $\Delta \alpha$) of quinoxaline were calculated using B3LYP with 6-311++G (d,p) basis set, based on the finite field approach. In presence of an applied electric field, the energy of a system is a function of the electric field. The first hyper polarizability is a third-rank tensor that can be described by a 3 ×3 ×3 matrix. The 27 components of the 30 matrix can be reduced to 10 components due to the Kleinman symmetry[34]. The components of β_0 are defined as the coefficients in the Taylor series exponents the energy in the external electric field. When the external electric field is weak and homogeneous, this expansion becomes

$$E = E^{0} - \mu_{\alpha}F_{\alpha} - \frac{1}{2}\alpha_{\alpha\beta}F_{\alpha}F_{\beta} - \frac{1}{6}\beta_{\alpha\beta\gamma}F_{\alpha}F_{\beta}F_{\gamma} + \dots$$

where E^0 is the energy of the unperturbed molecules, F_{α} is the field at the origin and μ_{α} , $\alpha_{\alpha\beta}$ and $\beta_{\alpha\beta\gamma}$ are the components of dipole moment, polarizability and the first-order hyperpolarizabilities respectively. The total static dipole moment (μ), the mean polarizability(α_0), the anisotropy of the polarizability (Δ_{α}) and the mean first-order hyperpolarizability (Δ_{α}), using the x, y, z components they are defined as follows:

The total static dipole moment

$$\mu = (\mu x^{2} + \mu y^{2} + \mu z^{2})^{1/2}$$

$$\alpha_{0} = 1/3 (\alpha x + \alpha y + \alpha zz)$$

$$\beta_{0} = (\beta x^{2} + \beta y^{2} + \beta z^{2})^{1/2}$$

$$= [(\beta_{XXX} + \beta_{XYY} + \beta_{XZZ})^{2} + (\beta_{YYY} + \beta_{YXX} + \beta_{YZZ})^{2} + (\beta_{ZZZ} + \beta_{ZXX} + \beta_{ZYY})^{2}]^{1/2}$$

$$\Delta \alpha = [(\alpha_{xx} - \alpha_{yy})^{2} + (\alpha_{yy} - \alpha_{zz})^{2} + (\alpha_{zz} - \alpha_{xx})^{2}/2]^{1/2}$$

The α and β values of the Gaussian 05 output are in atomic units (a.u) and these calculated values converted into electrostatic unit (e.s.u) (α : 1 a.u = 0.1482×10 ⁻²⁴ esu; for β : 1 a.u =8.639×10 ⁻³³ esu;) and these above polarizability values of quinoxaline are listed in Table (**3**). To study the NLO properties of molecule the value of urea molecule which is prototypical molecule is used as threshold value for the purpose of comparison. The calculated value of dipole moment of the quinoxaline compound is found to be 0.230293674 Debye. The magnitude of the molecule hyper polarizability is one of the important key factor in NLO system. The B3LYP/6-311++G(d,p) calculated first order hyperpolarizability value (β) of the quinoxaline is equal to 1.751468116×10 ⁻³⁰ e.s.u. Total dipole moment of title molecule is smaller than urea. The polarizability of the same molecule is one time greater than urea. **[35]** (μ and α_0 and β of urea are 1.525686 Debye, 5.047709×10 ⁻²⁴ e.s.u and 0.780324×10 ⁻³⁰ e.s.u respectively, obtained by B3LYP/6-311++G(d,p) method.From the resultant values we identify the title compound as a good NLO material. The low value of the dipole moment may be due to the symmetries of the title molecule. The calculated value of dipole moment is mentioned in Table 3.

 Table 3 : The calculated values of electric dipole moment, polarizability and first hyperpolarizability of quinoxaline

Parameters (a.u)	DFT B3LYP/6-311++G(d,p)
α ^{xx}	157.977056
u xy	0.000004410407
и ^{уу}	106.99404045
xz	0.00000201425266
u yz	-0.00000145610389
u zz	55.2873792
αο	106.752825a.u
	1.582076867×10 ⁻²⁵ e.s.u
Δα	88.93260486
	1.317981204×10 ⁻²³ e.s.u

0	
ρ o ^{xxx}	254.511387
р о ^{хху}	0.00000438708462
р о ^{хуу}	-15.12213323
p o ^{yyy}	-0.000166745762
p o ^{xxz}	-0.00017192135
p o ^{xyz}	-0.0000776069276
p o ^{yyz}	-0.0000134316489
ρ o ^{xzz}	-36.6566095
p o ^{yzz}	-0.000188351607
p _{zzz}	-0.0000537130271
β	202.7326422 a.u
	1.751468116×10 ⁻⁵⁰ e.s.u
μχ	-0.5853
μγ	-0.0000
μz	0.0000
μ total (Debye)	0.5853

4.4 Frontier molecular orbital analysis:

The Frontier orbital gap helps to characterize the chemical reactivity, chemical hardness, softness of a molecule.[35]. The highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) are known as frontier molecular orbitals (FMOs). The chemical activity of the molecule is also observed from eigen values of LUMO and HOMO and from the energy gap value calculated from it [36,37].

If the energy gap is smaller, then the molecule will be excited easily. In the present study the energy gap value is found to be less and hence if electron withdrawing groups are present in this molecule, the title molecule can show NLO activity. Consequently, the lowering of the HOMO-LUMO band gap is essentially a consequence of the large stabilization of the LUMO due to the strong electron –donor ability of the el ectron – donor group. From the HOMO-LUMO energy gap, one can find whether the molecule is hard or soft[**38**]. The soft molecules are more polarizable then the hard ones because they need small energy to excitation. Lower value of energy gap will render good corrosion inhibition efficiency, because the energy to remove an electron from the last occupied orbital will be low.Lower values of the energy difference will render good inhibition efficiency, because the energy to remove an electron from the last occupied orbital will be low.Lower values of the energy difference will render good inhibition efficiency, because the energy to remove an electron from the last occupied orbital will be low.Lower values of the energy difference will render good inhibition efficiency.

A molecule with a low energy gap is more polarizable and is generally associated with the high chemical activity and low kinetic stability and is termed soft molecule [40]. A hard molecule has a large energy gap and a soft molecule has a small energy gap [41]. It is shown from the calculations that Quinoxaline has the least value of global hardness (0.06102 eV) and the highest value of global softness is expected to have the highest inhibition efficiency. For the simplest transfer of electron, adsorption could occur at the part of the molecule where softness(S), which is a local property, has a highest value [42]. Quinoxaline with softness value of 16.3880 has the highest inhibition efficiency.

The atomic orbital composition of the frontier molecular orbital are sketched in Fig 4. The global hardness value of the molecule can be calculated using Koopman' theorem.[43]

$$\eta = \frac{1}{2} \left(\epsilon \epsilon \right).$$

The hardness has been associated with the stability of chemical system. The electron affinity can be used in combination with ionization energy to give electronic chemical potential, $\mu = \frac{1}{2} (\epsilon_{LUMO} + \epsilon_{HOMO})$. Chemical softness(S) = $1/\eta$ describes the capacity of an atom or group of atoms to receive electrons and is the inverse of the global hardness [44]. The global electrophilicity index, $\omega = \mu^2/2 \eta$ is also calculated and these values are listed in Table 4.

Fig 4: Atomic orbital composition of the frontier molecule for Quinoxaline.

Molecular properties	B3LYP/6-311++G(d,p)
LUMO+1	-0.16108
E _{LUMO} (eV)	-0.20596
$E_{HOMQ}(eV)$	-0.32800
HOMO-1	-0.34654
AE (CV)	-0.12204
$\Delta E (ev)$	-0.16692
$\frac{\Delta L}{\Lambda D} = \frac{(ev)}{(ev)}$	-0.14058
$\frac{\Delta \mathbf{E}}{HOMO-1 - LUMO+1} (\mathbf{C} \mathbf{V})$	-0.18546
Global hardness(η)	0.06102
Chemical softness(S)	16.3880
Electronic chemical potential(µ)	-0.26698
Global electrophilicity index(ω)	0.58405

 Table 4 : Calculated energy values of Quinoxaline in its ground state.

4.6 Mullikan analysis:

In the application of quantum mechanical calculations to molecular system, the calculation of effective atomic charges plays an important role. The results are given in Table 5 .The magnitude of the carbon atomic charges found to be either positive or negative. All the hydrogen atoms have a positive charge and the two nitrogen atoms have a negative charge.

S.NO	ATOMS	B3LYP/6-311++G(d,p)
1	Ν	-0.240463
2	N	-0.240463
3	С	0.200014
4	С	-0.016696
5	С	-0.042698
6	С	-0.011162
7	С	-0.011162
8	С	-0.042698
9	С	-0.016696
10	С	0.200014
11	Н	0.023552
12	Н	0.04412
13	Н	0.043333
14	Н	0.043333
15	Н	0.04412
16	Н	0 023552

4.7 Thermodynamic properties

On the basis of vibrational analysis of DFT studies at 6-311++G(d.p) level, some of the thermodynamic parameters[45] are calculated. These parameters are listed out based on the statistically thermodynamic functions are given in Table 6.

Table 6 : Theoretically computed Dipole moment(Debye), energy(au), zero point vibrational energy(kcal mol⁻¹), entropy(cal mol⁻¹k⁻¹), rotational temperature(Kelvin), rotational constant(GHz), thermal energy (Kcal/Mol) and Molar capacity at constant volume(Cal/Mol-Kelvin)of Quinoxaline.

Parameters	B3LYP/6-311++G(d,p)
Dipole moment (Debye)	0.5853
Zero point energy	323030.5 Joules/Mol
Entropy (Cal/Mol-Kelvin)	
Total	81.263
Translational	40.501
Rotational	28.811
Vibrational	11.951
Rotational temperature (Kelvin)	
	0.15252
	0.06288
	0.04452
Rotational constants (GHZ)	3.17793
	1.31020
	0.92772
Thermal Energy (KCal/Mol)	
Total	81.328
Translational	0.889
Rotational	0.889
Vibrtional	79.551
Molar capacity at constant volume (Cal/Mol-	
Kelvin)	
Total	27.080
Translational	2.981
Rotational	2.981
Vibrational	21.118

4.8 Electron absorption spectra:

Ultraviolet spectrum analysis of quinoxaline has been investigated by B3LYP/6-311++G(d,p) method. The calculated visible absorption maxima of λ_{max} which is the function of the electron availability have been reported in Table 7. Molecular orbital geometry calculations shows that the visible absorption maxima of this molecule correspond to the electron transition between frontier orbitals such as transition between HOMO and LUMO. The calculated results involving the vertical excitation energies, oscillator strength (f) and wavelength are listed in table. B3LYP/6-311++G(d,p) method predict one intense electronic transition at Ev (280 nm) with an oscillator strength f= 0.0715 which is in good agreement with the measured experimental data (λ_{exp} =280 nm) as shown in Fig 5.

Fig 5 (b)

Fig 5: UV-Visible spectrum of Quinoxaline (a) Experimental (b) Theoretical.

Table 7: Theoretical electronic absorption spectra of Quinoxaline (absorption wavelength λ (nm), excitation energies E (eV) and oscillator strengths (f) using DFT/B3LYP/6-311G(d,p) method in gas phase.

Experimental		Calculated by B3LYP/6-311++G(d,p)			
λ (nm)	Log (ε)	λ (nm)	E (eV)	(f)	
353	3.5	353.74 (33→35)	3.5050	0.0025	
300	3	300.41 (32→36) (34→35)	4.1309	0.0261	
280	4.5	280.05 (32→35) (34→36)	4.4273	0.0715	

5. Conclusion:

The equilibrium geometries of quinoxaline were investigated and analyzed at DFT at B3LYP/6-311++G (d, p) level. The thermodynamic properties and Mullikan's charges are also analyzed. The first order hyper polarizability and low energy gap value identified that the title compound is a good NLO material. The calculated lowest Homo-Lumo energy gap value implies that the molecule was most capable of offering electrons and it could have a better performance as corrosion inhibitor. Thus from the knowledge of the physical and chemical properties of these kinds of drug materials may lead to improve the properties of the tested molecules of the drugs by applying changes of the structure.

References:

- 1. http://en.wikipedia.org/wiki/Quinoxaline
- 2. Jean Renault, Michel Baron, Patrick Mailliet et al. (1981). "Heterocyclic quinones.2.Quinoxaline-5,6-(and 5-8)-diones-Potential antitumoral agents". Eur. J. Med. Chem. 16 (6): 545–550.

- Xianghong Wu, Anne E. V. Gorden (2007). "Regioselective Synthesis of Asymmetrically Substituted 2-Quinoxalinol Salen Ligands". J.Org. Chem. 72(23): 8691–8699. doi:10.1021/jo701395w.PMID 17939720.
- 4. Z. El Adnani, M. Mcharfi , M. Sfaira , M. Benzako ura, A.T. Benjelloun, M. Ebn Touhami, Corrosion Science 68 (2013) 223–230.
- 5. Y. Abboud, A. Abourriche, T. Saffaj, M. Berrada, M. Charrouf, A. Bennamara, N.Al Himidi, H. Hannache, Materials Chemistry and Physics 105 (2007) 1–5.
- 6. I.B. Obot, N.O. Obi-Egbedi, N.W. Odozi, Corrosion Science 52 (2012) 923–926.
- 7. Synthesis of Novel Aryl Quinoxaline Derivatives by New Catalytic Methods Reza Soleymani, Neda Niakan, Shohre Tayeb, and Shirin Hakimi, oriental journal of chemistry, 2012, vol. 28, no. (1):pg. 687-701.
- 8. Photosensitization of Guanine-Specific DNA Damage bya Cyano-Substituted Quinoxaline Di-Noxide, Tarra Fuchs and Kent S. Gates, Chem. Res. Toxicol. 1999, 12, 1190 1194.
- 9. A. Zarrouk1, A. Dafali1, B. Hammouti 1, H. Zarrok 2, S. Boukhris2, M. Zertoubi3, Int. J. Electrochem. Sci., 5 (2010) 46 55.
- 12. Y. Abboud, A. Abourriche, T. Saffaj, M. Berrada, M. Charrouf, A. Bennamara, N. Al Hamidi and H. Hannache, Mater. Chem. Phys. 105 (2007) 1
- 11. 13. M. Benabdellah, R. Touzani, A. Aouniti, A. Dafali, S. Elkadiri, B. Hammouti and M. Benkaddour, Phys. Chem. News 36 (2007) 60
- 12. 14. M. Benabdellah, K. Tebbji, B. Hammouti, R. Touzani, A. Aouniti, A. Dafali and S. El Kadiri, Phys. Chem. News, 43 (2008) 115.
- 13. S.Sebastian, N.Sundaraganesan, S.Manoharan, Spectrochim. Acta A 74(2009)312.
- 14. M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al., GAUSSIAN 09, Revision A.02, Gaussian, Inc., Wallingford, CT, 2009
- 15. A.P. Scott, L. Radom, J. Phys. Chem. 100 (1996) 16502–16513.
- V. Arjunan, Arushma Raj, R. Santhanama, M.K. Marchewka, S. Mohan c, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 102 (2013) 327–340.
- 17. R. Duchfield, J. Chem. Phys. 56 (1972) 5688-56 91.
- 18. K. Wolinski, J.F. Hinton, P. Pulay, J. Am. Chem. Soc. 112 (1990) 8251-8260.
- 19. W.B. Tzeng, K. Narayanan, J. Mol. Struct. (Theochem.) 434 (1998) 247–253.
- 20. G.Keresztury, S.Holly, J. Varga, G.Besenyei, A.Y. Wang, J.R. Durig, spectrochim. Acta, 9A(1993)2007-026.
- 21. G.Keresztury,in:J.M.Chalmers,P.R.Griffith(Eds),Raman spectroscopy:Theory,Hand book of vibrational spectroscopy,vol.1.John Wiley&sonsLtd.,New York,2002.
- 22. E.D.Glendening, C.R.Landis, F.Weinhold, WIREs Comput. Mol.Sci. (2011)1-42.
- 23. W.Kohn,L.J.Sham, Phys. Rev. 140(1965)A1133-A1138.
- M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M.Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y.Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery, Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J.Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M.Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C.Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox, Gaussian, Inc., Wallingford, CT, 2009.
- 25. P.S.Kalsi, spectroscopy of organic compounds, sixth edition, p(70)
- 26. V. Arjunan, S. Mohan, P.S. Balamourougane, P. Ravindran, Spectrochimica Acta Part A 74 (2009) 1215–1223
- 27. G. Varsanyi, Assignments for Vibrational Spectra of Seven Hundred Benzene Derivatives, vol. I, Adam Hilger, London, 1974.
- 28. N. Syam Sundar, Can. J. Chem. 62 (1984) 2238.
- 29. M. Rangacharyulu, D. Premaswarup, Ind. J. Pure Appl. Phys. 16 (1978) 37.
- 30. Y.X.Sun,Q.L.Hao,W.X.Wei,Z.X.Yu,L.D.Lu,X.Wang,Y.S.Wang,J.Mol.Struct.:Theochem.904(2009)74-82.
- 31. C.Andraud, T.Brotin, C.Garcia, F.Pelle, P.Goldner, B.Bigot, A.Collet, J.Am. chem.soc. 116(1994)2094-

2102.

- 32. V.M.Geskin, C.Lambert, J.L.Bredas, J.Am.chem.soc. 125(2003)15651-15658
- 33. D.Sajan.I.H.Joe, V.S.Jayakumar, J.Zaleski, J.Mol.struct. 785(2006)43-53.
- 34. D.A. Kleinman, Phys. Rev. 126 (1962) 1977-1979.
- 35. B. Kosar, C. Albayrak, Spectrochim. Acta 78A (2011) 160–167.
- 36. L. Xiao-Hong, Z. Xian-Zhou, Comput. Theor. Chem. 963 (2011) 34–39.
- L. Padmaja, C. Ravikumar, D. Sajan, I. Hubert Joe, V.S. Jayakumar, G.R. Pettit, O.Faurskov Nielsen, J. Raman Spectrosc. 40 (2009) 419–428.
- 38. Obot I B, Obi-Egbedi N O and Umoren S A, Int J Electchem Sci., 2009; 4: 863-877.
- 39. I. Fleming, Frontier Orbitals and Organic Chemical Reactions, (John Wiley and Sons, NewYork, 1976
- 40. Obi-Egbedi N O, Obot I B, El-Khaiary M I, Umoren S A and Ebenso E E, Int J Electro Chem Sci., 2011; 6:5649-5675.
- 41. Hasanov R, Sadikglu M, and Bilgic S, Appl. Surf Sci, 2007; 253: 3913-3921.
- 42. T.A.Koopmans, Physica 1(1934)104-113.
- 43. Pearson R G, Inorg Chem, 1988; 27: 734-740.
- 44. K.K. Irikura, THERMO.PL, National Institute of Standards and Technology, Gaithersburg, MD, 2002.

***** ****