

International Journal of ChemTech Research CODEN(USA): IJCRGG ISSN : 0974-4290 Vol.5, No.4, pp 1594-1601, April-June 2013

Density Functional Theory (DFT) Study Adsorptions On Single–Walled Carbon Nano Tube-A Review

A. S. Ghasemi¹*, M. Rezaei¹, M. Molla²

¹Dept. of Chem. Payame Noor University, Tehran, Iran ²Dept of Petroleum, Science and research Branch, Islamic Azad University, Tehran, Iran. Iran. Tel.: +98 9111570503; Fax: +98 1513258960;

*Corres.author: ashraf.ghasemi@gmail.com

Abstract: Carbon nanotubes (CNTs) are one of the most significant achievements of nano-technology because of its important applications in the design of electronic nano-devices. The study of their properties is therefore important. In this study, Density Functional Theory (DFT) was used to investigate the adsorption of gas molecules on the surface of carbon nanotubes. Theoretical studies have found that this single-walled carbon nanotube has novel electronic properties, which can be semiconducting; optimization of a sample system includes relaxation of atoms to lower forces from other constituents on each atom. Calculations were carried out with Gaussian98 suite of programs at all-electron level ¹.

Keywords: DFT, CNTs, Adsorption, Electronic properties, Gaussian98 program.

Introduction

Since their discovery in 1993 ²⁻³, single-wall carbon nanotubes (SWNTs) have been extensively studied because of their unique structure and properties⁴⁻⁵.Studying the interaction between chemical CNTs and gases could, from fundamental point of view, significantly deepen our understanding on nanoscale device physics. CNTs have a variety of superior properties including well-defined nanodimensional structure, high electronic and thermal conductivity, good mechanical stability, etc. These structures provide a large specific surface area per unit weight; higher than graphite, but are lower in density due to their hollow interior. Single-walled carbon nanotubes (SWNTs) are of interest as gas adsorbents because of their unique structural properties. Four different adsorption sites have been identified on bundles of SWNTs, internal (endohedral), interstitial channels (ICs), external

groove sites, and external surfaces⁶⁻⁷. Proposed method for this study is DFT which gives the values approximately approach to real ones. The studies on structural variations during oxygen adsorption and comparing with studies performed on adsorption of small molecules and atoms on surface areas of graphite and nanotubes and present study was approved that the chemical adsorption over C-C bond is most probable C-C bond^{δ -9}. The length of nanotube have selected with respect to the length of unit cell of nanotube. Then, after selection this length for nanotube, the carbon atoms situated in both ends of this length will have negative charge because of carbon bonds breaking. For saturation of carbon bond in two ends of nano wire and create a model similar to a real wire of nanotube, hydrogen atoms were added to the In our zigzag nanotube, 10 hydrogen atoms were added to basic structure of nanotube

and 16 hydrogen atoms were added to the end links of nanotube wire, in armchair model of nanotube, for obtaining a model so similar to a real one. Molecules and atoms can attach themselves onto surfaces in two ways. In physisorption (physical adsorption), there is a weak van der Waals attraction of the adsorbate to surface. In chemisorption (chemical the adsorption), the adsorbate sticks to the solid by the formation of a chemical bond with the surface. interaction is much This stronger than physisorption, and, in general, chemisorption has more stringent requirements for the compatibility of adsorbate and surface site than physisorption. The chemisorption may be stronger than the bonds internal to the free adsorbate which can result in the dissociation of the adsorbate upon adsorption (dissociative adsorption). Gas adsorption in carbon nanotubes and nanotube

Materials And Methods

2.1. Software

GAUSSIAN 98 package program

2.2. Computational details

In this work, we studied zigzag, (8, 0) (10, 0), (17, 0), (5, 0) and armchair (5, 5), (10, 10) tubes. In this approach we use DFT for calculation over (8, 0), (5, 0) SWCNT. The calculations are performed by hybrid functional B3LYP density functional theory (DFT) based method and 6-311G* standard basis set by GAUSSIAN 98 package of program. The calculations are performed by The self-consistent field (SCF) electronic structure calculations are performed based on density functional theory (DFT) with either localized basis (DMol) or plane-wave basis (CASTEP) over both zigzag (10, 0), (17, 0), and armchair (5, 5), (10, 10) tubes. DMol is a density functional theory

Results And Discussion

3.1. Adsorption energies

Primary structures of nanotubes have optimized in length and diameter by nanotube modeler software. The calculation was performed for a zigzag (5, 0) nano-tube of 7.10 length and 2.26 diameter. The optimized geometries of calculated configurations of O_2 and N_2 molecules adsorbed on (5, 0) SWCNT are schematically displayed in Figure 1¹⁴. Geometrical parameters, binding energies and dipole moment are summarized in Table1. Optimization was bundles is an important issue for both fundamental research and technical application of nanotubes. Theoretically, it was shown that the O_2 adsorption has a significant effect on electronic properties of small semiconducting nanotubes ¹⁰. The adsorption of methane (CH4) gas on SWNTs and idealized carbon slit pores at room temperature was studied by density functional calculations¹¹.After optimization the basic structure of nanotube, adsorption energy of O₂, N₂, CH4, CO₂, NH₃, NO₂, H2, Ar, H2O molecules for both zigzag and armchair cases by DFT was determined by studying the structures and the structure variations during gases adsorption. The best proposed method for this study is DFT which gives the values approximately approach to real ones.

(DFT) package based on an atomic basis distributed by MSI. More accurate electronic band structure and electron density are the choice of adequate model leads us to reasonable results which are calculated by a SCF plane-wave pseudo potential technique (CASTEP) ¹².CASTEP is a density functional theory (DFT) package based on plane-wave pseudo potential technique distributed by MSI. Comparable with experimental results. Minimum length of nanotube in SWCNTs model is unit cell's representative, which characterizes the comportment of this nanotube adsorption, similar to a real nanotube. It is appointed that, if the length of selected model is 3/2 and equal to unit cell, the model is an adequate one for calculation. Determination of the length of this unit cell with respect to its hexagonal rings is simple ¹³.

performed by atoms were added to the end links of nanotube wire and by GAUSSIAN 98 software, calculation method of B3LYP and $6-311G^*$ basis set. The best proposed method for this study is DFT which gives the values approximately approach to real ones. For nitrogen and oxygen molecules we have considered distinct adsorption sites, marked as CNT (A, A₁, A₂, A₃ and A₄ (Table1). CNT, CNT–O₂ and CNT–N₂ binding energies, E_{ab}, are calculated using:

 $E_{ad} = E_{tot}(moleculeO2 + CNTS) - E_{tot}(CNT_S) - E_{tot}(moleculeO_2)$

 $E_{ad} = E_{tot}(moleculeN2 + CNTS) - E_{tot}(CNTS) - E_{tot}(moleculeN_2)$

Where, E_{tot} (CNT), Etot (O₂) and E_{tot} (CNT+O2), E_{tot} (N2) and E_{tot} (CNT+N2) are the energies of the optimized tubes, that are adsorbate and tube– adsorbate systems, respectively. Based on these results we can conclude that the physical

adsorption over the surface area of nanotube occurs very difficultly and so this is not a suitable case. We approach that, the adsorption carry out over open ends of nanotubes, based on performed calculations, has more advantages.

Table 1. Calculated structural parameters and adsorption energies of N_2 and O_2 adsorbed on the (5, 0) SWNTs¹⁴.

Model	rC-C	rC-O	r0-0	rC-N	rN-N	E _b	Dipole moment
(configuration)							
CNT(A)	(C-C)1=1.401	-	-	-	-	-	1.0977
	(C-C)2=1.465	-	-	-	-	-	
CNT(5,0)-O2(A1)	(C-C)1=1.51	(C-O)2 =1.456	1.488	-	-	-0.103	2.4530
	(C-C)2=1.51	(C-O)2 =1.456					
CNT(5,0)-O2(A2)	(C-C)1=1.51	(C-O)2 =1.474	1.429	-	-	-0.071	2.4704
	(C-C)2=1.49	(C-O)2 =1.498					
CNT(5,0)-N2(A1)	(C-C)1=1.51	-	-	(C-N)1=1.511	1.256	0.063	2.5970
	(C-C)2=1.51	-	-	(C-N)2=1.511			
CNT(5,0)-N2(A2)	(C-C)1=1.50	-	-	(C-N)1=1.574	1.246	0.105	2.5764
	(C-C)2=1.49	-	-	(C-N)2=1.553			

Table 2 summarizes our results on the equilibrium tube–molecule distance, adsorption energy, and charge transfer for various molecules(NO₂, O₂, H₂O, NH₃, CH₄, CO₂, H₂, N₂, Ar) on (10, 0), (17, 0) and (5, 5) SWCNTs¹⁵. In general, all these gas molecules are weakly banded to the nanotube and the tube–molecule interaction can be identified as physisorption. Most molecules studied (with exception of NO₂ and O₂) are charge donors with small charge transfer (0.01 ~ 0.035 electron per molecule) and

weak binding (0.2 eV). For O₂ and NO₂, both of which are charge acceptors, the charge transfer is not negligible. This is also reflected in their larger adsorption energies. The tube–molecule interactions are comparable to the van der Waals-like interactions between these molecules and graphite surfaces ¹⁶. Our results show that there is no clear dependence of adsorption on the tube size and chirality (table 2).

Table 2. Equilibrium tube–molecule distance (*d*), adsorption energy (E_a) and charge transfer (*Q*) of various molecules on (10, 0), (17, 0) and (5, 5) individual SWNTs^a. The optimal adsorption sites are given in the table: T (top of an carbon atom). B (top of the centre of the C–C bond). C (top of the centre of carbon hexagon)¹⁵.

atom), D (top of the cer	toni), b (top of the centre of the c c bond); c (top of the centre of carbon hexagon)								
	NO2	02	H2O	NH3	CH4	CO2	H2	N2	Ar
(10, 0) SWNT d (Å)	1.93	2.32	2.69	2.99	3.17	3.20	2.81	3.23	3.32
Ea (meV)	797	509	143	149	190	97	113	164	57
Q (e)	-0.061	-0.128	0.035	0.031	0.027	0.016	0.014	0.008	0.01
Site	Т	В	Т	Т	С	С	С	С	С
(5, 5) SWNT <i>d</i> (Å)	2.16	2.46	2.68	2.99	3.33	3.54	3.19	3.23	3.58
E_a (meV)	427	306	128	162	122	109	84	123	82
<i>Q</i> (e)	-0.071	-0.142	0.033	0.033	0.022	0.014	0.016	0.011	0.011
Site	Т	В	Т	Т	С	С	С	С	С
(17, 0) SWNT d (Å)	2.07	2.50	2.69	3.00	3.19	3.23	2.55	3.13	3.34
Ea (meV)	687	487	127	133	72	89	49	157	82
Q (e)	-0.089	-0.096	0.033	0.027	0.025	0.015	0.012	0.006	0.01
Site	Т	В	Т	Т	С	С	C	С	C

(a Tube-molecule distance d is defined as the nearest distance between atoms on the molecule and the nanotube for T site, or the distance between the centre of the gas molecule and the centre of the carbon hexagon (carbon-carbon bond) for the C (B) site. The adsorption energy E_a (d) is defined as the total energy gained by molecule adsorption at equilibrium distance: E_a (d) = Etot (tube + molecule) – Etot (tube) – Etot (molecule). Charge transfer Q denotes the total Mulliken charge number on the molecules, positive Q means charge transfer from molecule to tube.)

The calculated tube-molecule distance, adsorption energy and charge transfer for the different sites are given in table 3. The atomic structure and total charge density of valence electrons for a H₂O molecule adsorbed on (10, 0) SWCNT. No substantial electron density overlap is found in the region between the gas molecule and nanotube, indicating that no chemical bond is formed. As shown in figure 2, four possible sites (surface, pore, groove, intestinal) for the H₂ adsorption in the tube bundle have been considered. We find that the adsorption energy and charge transfer of H_2 in the interstitial and groove sites of the tube bundle are considerably larger than those on the surface sites. The pore site is also energetically more favorable than the surface site. Similar results are obtained for the other gas molecules studied. The enhancement of molecule adsorption on the groove and interstitial sites can be understood by the increased number of carbon nanotubes interacting with the molecule¹⁴. Our present results compared well with a previous empirical force field simulation ⁷. Interaction of (8, 0) zigzag SWCNT with a single NH₃ molecule and NH₃ (H₂O) n=1, 2, 3 complexes is considered¹⁷. To evaluate the interaction behavior between the NH₃ (H₂O) n=0, 1, 2, 3 complexes and CNT, we use the binding energy (E_B) and the coupling energy (E_C), respectively. E_B measures the average interaction between an ammonia molecule and its surroundings, including the intermolecular interaction within the water molecules and the interaction between ammonia molecule and the nanotube. E_B can be calculated using the following equation:

 $\begin{array}{l} E_{B}=\mbox{-} (E_{complex}\mbox{-} E_{tube}\mbox{-} E_{NH3}\mbox{-} nEwater)\ n=0,\ 1,\ 2, \\ 3 \end{array}$

Where $E_{complex}$ is the total energy of the NH₃ (H₂O) _n /tube hybrid complex; E_{tube} is the total energy of tube; E_{water} is the total energy of an individual water molecule; E_{NH3} is the total energy of an individual ammonia molecule and n is the number of water molecules. To differentiate between the ammonia–water molecular interaction and the tube–ammonia coupling interaction, here we define the coupling energy (E_C) as:

$$\begin{split} E_{C} = \text{-} & (E_{complex} \text{-} E_{tube} \text{-} E_{NH3}(H_{2}O) \ n \) \qquad n = 0, \ 1, \\ 2, \ 3 \end{split}$$

Table 3. Equilibrium tube–molecule distance (d), adsorption energy (E_a) and charge transfer (Q) of the H2 molecule on
different adsorption sites (see figure 3) in the (10, 10) SWNT bundle[14].

Site	d (Å)	Ea (meV)	<i>Q</i> (e)		
Surface	3.01	94	0.014		
Pore	2.83	111	0.012		
Groove	3.33	114	0.026		
Interstial	3.33	174	0.035		

Table 4 displays that E_B and E_C are functions of n (number of water molecules) and they decrease upon increasing it. The coupling energy E_C is not sensitive enough to the number of water molecules, except for the first water molecule added to the system in which the energy is reduced from -2.0 kcal/mol to -4.1 kcal/mol.

However, table 5 shows that when the n is increased, the contribution of each water molecule in energy reduction is lessened. The equilibrium tube– NH_3 distance (R) also exhibits sensitivity to the n. Results reveal that R is shortened to 0.25 by changing the n from zero to three.

Table 4. Binding energy (E_B), coupling energy (E_C) and equilibrium tube–molecule distance (R) of the tube–NH3 (H2O) n=0, 1, 2, 3 systems as calculated by X3LYP ¹⁷.

System	EB (kcal/mol)	EC (kcal/mol)	R (Å)			
NH3	-2.0	-2.0	3.50			
NH3 (H2O)	-9.2	-4.1	3.42			
NH3 (H2O) 2	-13.2	-4.4	3.33			
NH3 (H2O) 3	-18.7	-4.9	3.25			

System	E _B (kcal/mol)	E _C (kcal/mol)	
NH3	-2.0	-2.0	
NH3 (H2O)	-9.2	-4.1	
NH3 (H2O) 2	-6.6	-2.2	
NH3 (H2O) 3	-6.3	-1.6	

Table 5. Binding energy (E_B) and coupling energy (E_C) per water molecule as a function of number of water molecules

3.2. Electronic properties

The electronic density of states (DOS) of individual (10, 0) SWCNTs adsorbed with NO2, NH3, along with that of the pure SWCNT. Except for the slight modification on DOS shape due to band splitting, we find that the DOS of NH3 adsorbed nanotube is very close to that of the pure nanotube. Similar behavior is obtained for all charge donor molecules studied (N2, H2O, and CO2 etc)¹⁵. Therefore, we suggest that the interaction between the nanotube and these gas molecules is weak and does not have a significant influence on the electronic structures of SWCNTs. The electrical conductance of an individual semiconducting tube increases dramatically upon NO_2 gas exposure and the NO_2 is identified as charge acceptor ¹⁸. Collins et al found that the oxygen gas has dramatic effects on conductivity, thermo power, and local DOS of individual semiconductor nanotubes, while Ar, He, and N₂ have no noticeable doping effect. Oxygen exposure generally converts semiconducting tubes into apparent conductors¹⁹. Based on present calculations, we propose that the effects from most gas molecules in the air, such as N_2 , CO_2 , H₂O, are relatively weak. The air exposure effect should be dominated by O_2 , which is a charge acceptor and make all nanotubes p-type conductors. Weak coupling between NO_2 and the carbon nanotube is found. The carbon bonds near the molecule are weakened due to the charge transferred from carbon to NO₂. Influence of NH₃

adsorption on the electronic properties such as onsite charge transfer, charge density, molecular orbitals, and dipole moments are computed to get more details about the interaction between NH₃ and tube in each system (Table 6)¹⁶. As shown in table 6, the computed energy-gap (Eg) is insensitive to the n except for tube-NH₃ (H₂O) $_{3}$ system in which a slight change of about 0.003 eV is observed. It is known that the changes in the dipole moments affect the intermolecular interactions. In table 6, the amplitude of dipole moments for the tube- NH₃ (H₂O) n=0, 1, 2, 3 complexes are listed. With the exception of adding the first water molecule, the system dipole moments are increased by addition of more water molecules. However, dipole moments direction from tube-NH₃ to tube-NH₃ (H₂O) n=1, 2, 3 systems are inverted (Fig 3). The coupling electrons of the CNT and the between the valence electrons of the NH₃ molecule are increased. However, there is still weak coupling between the electrons of the CNT and the valence electrons of the ammonia molecules. However increasing the n in the NH₃ (H₂O) n cluster leads to a dissociated (ion-pair) structure for large n [NH₄ $_$ $_$ $_$ (H₂O) n $_$ $_$ OH] as a local minimum where a proton is transferred from a water molecule to the ammonia molecule²⁰⁻²¹.At the ammonia-water solution (instead of NH₃ alone) this changes the conductance of CNTs.

Table 6. 1	Energy-gap (Eg), dip	ole moment µ	ı , and	nitrogen	atom charge	of the tube-	- NH3	(H2O)	n=0, 1	1, 2, 3	systems	as
------------	--------------	----------	---------------	---------	----------	-------------	--------------	-------	-------	--------	---------	---------	----

calcul	ated	bv	B3I	YP.
curcus	aucu	\boldsymbol{v}_{J}	DOL	

System	Eg (eV)	µ (Debye)	Nitrogen atom charge	Average hydrogen atom charge
NH3	0.220	2.16	-0.628	+0.213
NH3 (H2O)	0.220	1.83	-0.645	+0.205
NH3 (H2O) 2	0.220	3.89	-0.659	+0.198
NH3 (H2O) 3	0.223	6.51	-0.688	+0.197

Figure 1. (A) The(5,0)SWCNT,(A1) and (A2) adsorption configurations of an N2 molecule (sites A1 and A2, respectively) (A3) and (A4) adsorption configurations of an O_2 molecule (sites A3 and A4, respectively)¹⁴.

Figure 2. Illustration of several adsorption sites for the H_2 molecule in the nanotube bundle. (*a*) Surface; (*b*) pore; (*c*) groove; (*d*) interstial.

Figure 3. Dipole moment orientation for (a) pristine tube (8, 0), (b) tube–NH₃, (c) tube–NH₃(H₂O) (d) tube–NH₃(H₂O)₂ (e) tube–NH₃(H₂O)₃¹⁷.

Conclusion

In this work the structures of $(O_2, N_2, CH_4, CO_2, NH_3, NO_2, H_2, Ar, H_2O)$ molecules adsorption over zigzag, (8, 0) (10, 0), (17, 0), (5, 0) and armchair (5, 5), (10, 10) tubes were studied by using density functional theory (DFT). It is found that interaction of nitrogen molecule with surface of nano-tube is an exothermic chemical reaction in which the amount of liberated energy varies with adsorption site of nitrogen molecule (table 1)¹⁴. We found that all molecules are weakly adsorbed on SWCNT with small charge transfer, while they can be either a charge donor or an accepter of the nanotube. The adsorption of some

References

- Frisch MJ, et al., *Examination of Gaussian-Type Basis Sets on Alkali Metal Iodides*. GAUSSIAN 98. Gaussian, Inc., Pittsburgh, PA, 1998.
- Iijima S, Ichihashi T Single-shell carbon nanotubes of 1-nm diameter. *Nature*,1993, 363,603–608.
- 3. Bethune DS, Kiang CH, de Vries MS, Gorman G, Savoy R, Vazquez J, et al, Cobaltcatalysed growth of carbon nanotubes with single-atomic-layer walls. *Nature*, 1993, 363,605–612.
- 4. Dillon AC, Jones KM, Bekkedahl TA, Kiang CH, Behtune DS, Heben MJStorage of hydrogen in single walled carbon nanotubes. *Nature*, 1997, 386, 377–386.
- 5. Tans SJ, Devoret MH, Dai H, Thess A, Smalley RE, Geerligs LJ, et al, Individual single-wall carbon nanotubes as quantum wires. *Nature*, 1997, 386,474–481.
- 6. G. Stan, and M.J. Bojan, and S. Curtarolo, and S.M. Gatica, and M.W. Cole Uptake of gases in bundles of carbon nanotubes, *Phys. Rev. B*, 2000, 62, 2173.
- 7. K. A. Williams and P. C. Eklund, *Chem Phys. Lett*, 2000, 320, 352.
- M. Meyyappan, Carbon nanotube, *Science and Applications*, Boca Roton, London, NewYork, Washington D. C. ISBN: 0-8493-2111-5, CRC Press LLC, 1st Ed, 2005.
- 9. A.Ricca, C. W. Bauschlicher Jr the adsorption of NO2 on (9,0) and (10, 0) carbon nanotubes, *Chemical Physics*, 2006, 323 (2-3), 511-518.
- 10. Jhi S H, Louie S G and Cohen M L, *Phys. Rev. Lett.* 2000, 85, 1710.

gas molecules on SWCNTs can cause a significant change in electronic and transport properties of the nanotube due to the charge transfer and charge fluctuation. The molecule adsorption on the surface or inside of the nanotube bundle is stronger than that on an individual tube¹⁵. The energy values and equilibrium distances between NH_3 molecule and tubes obtained from DFT calculations are typical of physisorption. The current results clearly indicate that addition of water molecules to tube– NH_3 system increases the interaction between tube and ammonia molecule¹⁷.

- 11. Tanaka H, Ei-Merraoui M, Steele W A and Kaneko K, *Chem. Phys. Lett.* 2002, 352-334.
- Payne M C, Teter M T, Allen D C, Arias T A and Joannopoulos J D, *Rev. Mod. Phys.* 1992, 64, 1045.
- 13. C. White and John W.Mintmire Fundamental Properties of Single-Wall Carbon Nanotubes, *J. Phys. Chem, B*, 2005, 109, 52-65.
- F. Ashrafi*, A.S.Ghasemi, Density Functional Theory (DFT) Study of O₂, N₂ Adsorptions on H-Capped (5, 0) Single–Walled Carbon Nanotube (CNT), *Journal of Chemistry*, 2012, 9(4), 2134-2140.
- Jijun Zhao, Alper Buldum, Jie Han and Jian Ping Lu, Gas molecule adsorption in carbon nanotubes and nanotube bundles, Institute of *Physics Puplishing Nanotechnology*, 2002, 13, 195–200.
- 16. Vidali G, Ihm G, Kim H Y and Cole M W, Potentials of Physical Adsorption, *Surf. Sci. Rep.* 1991, 12, 133.
- Bahram B. Shirvani, Javad Beheshtian, Gholamabbas Parsafar, Nasser L. Hadipour, DFT study of NH3(H2O)n=0,1,2,3 complex adsorption on the (8,0) single-walled carbon nanotube, *Computational Materials Science*, 2010, 48, 655–657.
- Kong J, Franklin N R, Zhou C, Chapline M G, Peng S, Cho K and Dai H, Functional Single-Wall Carbon Nanotube and hybrids Associating ..., *Science*, 2000, 287: 622.
- Collins P G, Bradley K, Ishigami M and Zettl A, Extreme Oxygen Sensitivity of Electronic Properties of Carbon Nanotubes, *Science*, 2000, 287, 1801.

- 20. U. Buck, F. Huisken, Infrared Spectroscopy of Size-Selected Water and Methanol Clusters, *Chem. Rev.* 2000, 100, 3863.
- 21. A. Lenz, L. Ojamae, Theoretical IR Spectra for Water Clusters (H2O) n (n=6-22, 28, 30) and Identification of Spectral Contributions from Different H-Bond Conformations in Gaseous and Liquid Water, J. Phys. Chem. A, 2006, 110, 13388.
