

International Journal of ChemTech Research CODEN(USA): IJCRGG ISSN : 0974-4290 Vol.5, No.4, pp 1421-1427, April-June 2013

Synthesis and Characterization of 5,5'-(6-phenoxy-1,3,5triazine-2,4-diyl)bis(azanediyl)bis(2-hydroxybenzoic acid) and its metal complexes

Kiran R.Chaudhari¹* and J.A.Chaudhari²

¹Research Scholar of JJT University,Rajasthan-333 001, India. ²Shri R.K.Parikh Arts & Science college Petlad,Gujarat-388450,India.

*Corres.author: krc_1718@yahoo.com

Abstract:Co-ordination polymers of novel bis ligand namely 5,5'-(6-phenoxy-1,3,5-triazine-2,4diyl)bis(azanediyl) bis(2-hydroxybenzoic acid) have been prepared with various metal complexes viz Zn⁺²,Cu⁺², Ni⁺², Co⁺² and Mn⁺². The novel bis bidentate ligand (PTDB) is synthesized by condensation of 5-aminosalicylic acid with 2,4-dichloro-6-phenoxy-1,3,5-triazine in presence of catalyst. All these co-ordinationpolymers and parent ligand are characterized by elemental analysis, IR spectra and diffuse reflectance spectralstudies for their structure determination. The thermal stability was evaluated by thermogravimetricanalyses(TGA). In addition, all of the coordination polymers have been characterized by their magneticsusceptibilities. The microbicidal activities of all the samples have been monitored against plant pathogens.**Keywords**: 5-amino salicylic acid, antibacterial and antifungal activities, coordination polymers, IR, NMR,reflectance spectra and TGA.

Introduction

Nitrogen containing heterocyclic play an important role, not only for life science industries but also in many other industrial fields related to special and fine chemistry. Among them s-triazine ring containing derivatives have been reported for applicable mostly as reactive dyes and some are used as polymers and drugs .The study of co-ordination polymers has made much progress [1-4]. Such co-ordination polymers are mostly derived from bi-chelating ligands in which metal ions and chelating agents are arrayed alternatively. Most of bichelating ligands are derived from well known chelating agents like 8-hydroxy quinoline and salicylic acid etc [5,6]. The joining segment of these two similar ligands are mainly –N=N-, SO2, -CH2 -, -O- [5-10]. A promising method has been reported for the formation of coordination polymers of enhanced chelating ability by using a bidentate 8-hydroxyquinoline moiety in which two 8-hydroxyquinolinyl end groups are joined with bridge, usually at the 5,5'-position [11–13]. The literature survey reveals that bis-5-amino salicylic acid ligand having 1,3,5-triazine ring as a bridge has not been reported so far. Though 4-amino salicylic acid is excellent anti T.B agent. Thus this may afford good chelating ligand with better microbicidal activity. With this view, thepresent authors communicated the initial work recently. Hence it was thought to undertake such type of study. Thus the present paper deals with synthesis, characterization and chelating properties of ligand (PTDB) and its co-ordination polymers are shown in Scheme 1.

5,5'-(6-phenoxy-1,3,5-triazine-2,4-diyl)bis(azanediyl)bis(2-hydroxybenzoic acid)(PTDB)

$$\label{eq:ptdb} \begin{split} (PTDB-M^{+2})_n \ polymers \\ where, M=Cu(II), Mn(II), Ni(II), Co(II), Zn(II) \end{split}$$

Experimental

Materials

All other chemicals used were of laboratory grade. 5-amino salicylic acid was prepared by method reported [14,15].

Synthesis of 5, 5'-(6-phenoxy-1,3,5-triazine-2,4-diyl)bis(azanediyl) bis(2-hydroxybenzoic acid) (PTDB)

The 5-Amino salicylic acid (SA) (i.e. 5-Aminosalicylic acid) was obtained from local dealer.

To a suspension of 5-amino salicylic acid (3.06g, 0.02 mol), 2,4-dichloro-6-phenoxy-1,3,5-triazine (2.41 g, 0.01 mol) in an acetone–water mixture was added. Then K_2CO_3 (0.02 mol) was added as an acid accepted[16]. The resulting mixture was refluxed for 3 hr with occasional shaking. The resulting suspension, which contained a colour precipitate, was neutralise and then filtered. The solid product was collected and dried to give PTDB (58% yield). The product melted with decomposition at above 240^oC (uncorrected).

Preparation of coordination polymer

All coordination polymers were synthesized by using equimolar amount of ligand PTDB and metal salt. A warm clear solution of bis-ligand (0.01 mol) in ethanol-acetone (60ml) was added drop wise in metal salt(0.01mol) in alcoholic NaOH with stirring. The pasty precipitates were obtained at neutral pH. These were dissolved by

addition of water up to clear solution. The reaction mixture was heated on a water bath for 0.5 hr. The reaction mixture was made alkaline by the addition of dilute sodium acetate or ammonia until the precipitation was completed. The polymer separated out in the form of a suspension and was digested on a boiling water bath for about 1 hr. Finally, the resultant solid was collected by filtration and washed with hot water, dimethylformamide (DMF), and then acetone. The polymer [PTDB-M⁺²] (resultant product) was air-dried.

Antimicrobial Activities

Antibacterial activity and antifungal activities of PTDB ligand and its coordination polymers were studied against gram-positive bacteria (*Bacillus subtilis* and *staphylococcus aureus*) and gram-negative bacteria (*E.coli, salmonella typhi* and *klebsiella promioe*) and plant pathogenic organisms used were *Aspergillus niger, Candida albicans, Trichoderma harsianum., Mucor mucedo.*, and *Botrytis cinerea* at a concentration of 50 μ g/ml by agar cup 520 plate method. The methanol system was used as control in this method. The area of inhibition of zone was measured in mm.

Measurements

The C, H, N contents of metal were determined by TF-Flash-1101 EA. The metals contents of metal chelates were determined volumetrically by Vogel's method [17]. To a 100mg chelate sample, 1ml of HCl, H_2SO_4 and HClO₄ each were added and then 1 gm of NaClO₄ was added. The mixture was evaporated to dryness and the resulting salt was dissolved in double distilled water and diluted to the mark. From this solution the metal content was determined by titration with standard EDTA solution. Infrared spectra of the synthesized compounds were recorded on Nicolet 760 FT-IR spectrometers. NMR spectrum of ligand was recorded on a Brucker spectrophotometer at 400 MHz. Magnetic susceptibility measurement of the synthesized coordination polymer was carried out on Gouy Balance at room temperature. The electronic spectra of coordination polymer in solid were recorded at room temperature. MgO was used as a reference. Antimicrobial activity of all the samples was monitored against various gram positive(+) and gram negative(-) organisms, following the method reported in the literature [18,19].

Results And Discussion

The synthesis of bis bidentate ligand of PTDB was performed by a simple nucleophilic substitution reaction of 2,4-dichloro-6-phenoxy-1,3,5-triazine and 5-amino salicylic acid. The resulting PTDB ligand was an amorphous colour powder. The ligand is characterized by elemental analysis as well as ¹H NMR and IR spectroscopic techniques as given below.

Elemental Analysis

The metal and C, H, N contents of ligand and coordination polymer (its coordination polymer) are shown in Table-1 and are also consistent with the predicted structure. The results show that the metal: ligand (M: L) ratio for all divalent metal chelate is 1:1.

Empirical	Formula	Mol. Cal	Yield	Elemental Analysis (%) Found(Calcd)				
		g/ mor	70	С	Н	Ν	М	
$C_{23}H_{17}N_5O_7$		475	58	58.11(58.07)	3.60(3.55)	14.73(14.69)		
$C_{23}H_{15}N_5O_7Cu$.2H ₂ O	572	60	48.21(48.17)	3.34(3.29)	12.22(12.17)	11.09(11.02)	
$C_{23}H_{15}N_5O_7Ni$.2H ₂ O	568	53	48.62(44.03)	3.37(3.32)	12.32(12.28)	10.37(10.31)	
$C_{23}H_{15}N_5O_7C_0$.2H ₂ O	567	55	48.60(44.01)	3.37(3.32)	12.33(12.28)	10.33(10.32)	
$C_{23}H_{15}N_5O_7Mn$.2H ₂ O	564	62	48.95(44.56)	3.39(3.35)	12.41(12.36)	09.73(09.70)	
$C_{23}H_{15}N_5O_7Zn$.2H ₂ O	573	59	48.06(43.11)	3.33(3.28)	12.18(12.85)	11.38(11.35)	

r_hl_	1.	Dharding	abarriaal		of 41. o	line and	DTDD	and me	4.0 0.00	
гяте.		PHVSICO	cnemical	narameters	or the	пояпа	РПЛК	and me	чят сог	nniexes
Labie		I Hybico	cincinicai	purumeters	or the	inguina	1 1 0 0	and me	cui coi	in prezies

Metal Chelates	BM	Electronic Spectral	Transitions	IR spectral feactures Common for all cm ⁻¹
PTDB -Cu ⁺²	1.99	23370	C.T	3030, Aromatic
		15655	^{2}Eg $^{2}T_{2}g$	1520,
PTDB -Ni ⁺²	3.75	22478	$^{3}A_{2}g ^{3}T_{1}g(P)$	1640,
		15607	${}^{3}A_{2}g$ ${}^{3}T_{1}g(F)$	1710 CO
		8200	${}^{3}A_{2}g$ ${}^{3}T_{2}g$	3450-3160 OH
PTDB -Co ⁺²	4.45	20660	${}^{4}T_{1}g(F) {}^{4}A_{2}g$	3400 Sec. NH
		18867	${}^{4}T_{1}g(F) {}^{4}T_{1}g(P)$	1690 COOH
		10975	${}^{4}T_{1}g(F) {}^{4}T_{2}g$	1070 C-O-M &
PTDB -Mn ⁺²	5.06	23045	${}^{6}A_{1}g {}^{6}A_{1}g ({}^{4}Eg)$	509 O-M
		18657	${}^{6}A_{1}g {}^{4}T_{2}g({}^{4}G)$	700 N-M
		15380	${}^{6}A_{1}g {}^{4}T_{1}g({}^{4}G)$	650
PTDB -Zn ⁺²	Diamagnetic			

Table -2: Spectral feactures and magnetic moment of metal chelates

IR Analysis

The important infrared spectral bands and their tentative assignments for the synthesized bis-ligand and its coordination polymers were recorded as KBr disks and are shown in Table 2.

Examination of IR spectrum of ligand of PBDQ comprises the important bands due to Salicylic acid. The bands were observed at 1640, 1520, and 3030cm⁻¹. The broad band in ligand and its coordination polymer at 3160 - 3450cm⁻¹ are due to the presence of the –OH group [20].

In the investigated coordination polymers, the –OH group of the ligand forms a coordination bond with the metal ions. whereas the band at 509 cm⁻¹ in the IR spectrum of PTDB assigned to in-plane –OH deformation was shifted towards higher frequency in the spectra of the coordination polymer due to the formation of the M–O bond [21]. This was further confirmed by a weak band at 1070 cm⁻¹ corresponding to C–O–M stretching, while bands around 700 and 650 cm⁻¹ correspond to the N M vibration [22].

¹H NMR Analysis

The structural analysis of the ligand (PTDB) was determined by ¹H NMR spectrum.

NMR

 (DMSO)
 6.91 – 7.83 ppm (11H)
 Multiplet Aromatic

 11.00 ppm (1H)
 Singlet (COOH)

 5.35 ppm (1H)
 Singlet (OH)

 4.0 ppm (1H)
 Singlet (NH)

Magnetic Measurements

Magnetic moments of coordination polymers are given in Table 2. The diffuse electronic spectrum of Cu^{+2} complex shows two broad bands, 15655 cm⁻¹ and 23370 cm⁻¹. The first band may be due to a ${}^{2}Eg {}^{2}T_{2}g$ transition, while the second band may be due to charge transfer. The first band shows structures suggesting a distorted octahedral structure for the Cu⁺² metal complex [23-25]. The Co⁺² metal complex gives rise to three

absorption bands at 20660 cm⁻¹, 18867 cm⁻¹ and 10975 cm⁻¹ which can be assigned ${}^{4}T_{1g}(F) {}^{4}A_{2g}$, ${}^{4}T_{1g}(F) {}^{4}T_{1g}(P)$ and ${}^{4}T_{1g}(F) {}^{4}T_{2g}$ transitions, respectively. These absorption bands and the μ_{eff} value indicate octahedral configuration of the Co⁺² metal complex [26,27]. The spectrum of Mn⁺² polymeric complex comprised three bands at 23045 cm⁻¹, 18657 cm⁻¹ and 15380 cm⁻¹. These bands may be assigned to ${}^{6}A_{1g} {}^{6}A_{1g}$ (${}^{4}Eg$), ${}^{6}A_{1g} {}^{4}T_{2g}({}^{4}G)$ and ${}^{6}A_{1g} {}^{4}T_{1g}({}^{4}G)$ transitions, respectively. The high intensity of the bands also suggests that they may have some charge transfer character. The magnetic moment is found to be lower than normal range. In the absence of low temperature measurement of magnetic moment, it is difficult to attach any significance to this. As the spectrum of the metal complex of Ni⁺² show three distinct bands at 22478 cm⁻¹, 15607 cm⁻¹ and 8200 cm⁻¹ are assigned as ${}^{3}A_{2g} {}^{3}T_{1g}(P)$, ${}^{3}A_{2g} {}^{3}T_{1g}(F)$ and ${}^{3}A_{2g} {}^{3}T_{2g}$ transition, respectively, suggesting the octahedral environment for Ni⁺² ion. The observed μ_{eff} values in the range 1.99– 5.06 B.M are consistent with the above moiety [28,29].

Thermal Studies

The TGA data for the Co-ordination polymers samples at different temperatures indicate that the degradation of the co-ordination polymers is noticeable beyond 300° C. The rate of degradation becomes a maximum at a temperature between 400 and 500° C. This may be due to acceleration by metal oxides, which form in situ. Each polymer lost about 60% of its weight when heated up to 680° C. Inspection of the thermograms of all coordinated polymer samples revealed that all samples suffered appreciable weight loss in the range of 160 to 280° C. This may be due to the presence of a coordinated water molecule.

Antimicrobial Activities

The antibacterial and antifungal data obtained from analysis are shown in Table-3 and Table-4, respectively. The increase in antimicrobial activity may be considered in light of Overtone's concept [30] and Tweedy's chelation theory[31]. According to Overtone's concept of cell permeability, the lipid membrane that surrounds the cell favors the passage only of lipid-soluble materials due to which liposolubility is an important factor controlling the antimicrobial activity. On complexation, the polarity of the metal ion will be reduced to a greater extent due to the overlap of the ligand orbital and partial sharing of the positive charge of the metal ion with donor groups. Further, it increases the delocalization of -electrons over the whole chelate ring and enhances the lipophilicity of the coordination polymers. This increased lipophilicity enhances the penetration of the enzymes of microorganisms. These coordination polymers also disturb the respiration process of the cell and thus block the synthesis of proteins, which restricts further growth of the organisms.

Compounds	Gram +ve		Gram -ve			
	Bacillus	Staphylococcus	klebsiella	Salmonella	E.coli	
	subtilis	Aureus	promioe	typhi		
PTDB	64	70	65	70	71	
$(Cu PTDB (H_2O)_2)_n$	66	75	64	65	75	
$(Co PTDB (H_2O)_2)_n$	67	72	70	73	64	
(Ni PTDB $(H_2O)_2)_n$	71	70	80	84	70	
$(Mn PTDB (H_2O)_2)_n$	65	69	71	75	78	
$(Zn PTDB (H_2O)_2)_n$	71	70	76	70	72	

Table-3: Antibacterial activity	of coordination	Polymers
---------------------------------	-----------------	----------

Table-4:Antifungal activity of coordination Polymers

Compounds	Zone of Inhibition at 1000 ppm (%)					
	Aspergillus	Candida	Trichoderma	Mucor	Botrytis	
	Niger	albicans	harsianum	mucedo	cinerea	
PTDB	75	74	58	56	55	
$(Cu PTDB (H_2O)_2)_n$	77	68	63	73	69	
$(Co PTDB (H_2O)_2)_n$	72	72	70	71	65	
(Ni PTDB $(H_2O)_2)_n$	62	73	85	75	77	
$(Mn PTDB (H_2O)_2)_n$	63	68	69	68	71	
$(Zn PTDB (H_2O)_2)_n$	65	65	66	70	76	

Coordination polymers exhibit higher biocidal activity as compared with the free ligands; from the comparative analysis shown in Table 3 and Table 4, respectively, it is observed that all the coordination polymer are more potent biocidals than the free ligands. From the data obtained it is clear that Cu (II) is highly active among the coordination polymer of the respective metal.

Conclusion

The results obtained in this study allow the following conclusions. The synthesis design of new bis-ligand has been performed successfully, and analysed by normaly spectral study. A series of some novel coordination polymers from bis-ligands with transition metals have been prepared and characterized for their spectral and magnetic properties. All the synthesized coordination polymer compounds were screened for their antimicrobial activity. The coordination polymers exhibited behave toxic for gram-negative bacteria (*E.coli, samonella typhi* and *klebsiella promioe*) and gram-positive bacteria (*Bacillus subtilis* and *staphylococcus aureus*), and plant pathogenic organisms (fungi) used were *Aspergillus niger, Candida albicans, Trichoderma harsianum, Mucor mucedo,* and *Botrytis cinerea* microorganisms. In comparison with the ligand, coordination polymers were more active against one or more bacterial strains, thus introducing a novel class of metal-based bactericidal agents. The information regarding geometry of the coordination polymer was obtained from their electronic and magnetic moment values. The magnetic moment values of coordination polymer indicate an octahedral geometry.

Acknowledgement: We are grateful to the Principal, Shri R.K.Parikh Arts and Science College Petlad for providing the necessary research facilities.

References

- 1. Smolin EM., Rapopret, L, S-Triazine and derivatives interscience: New York; 1954.
- 2. Halverson F., Hirt, RJ., Chem. Phys., 1951, 19, 711.
- 3. Hirt R, Salley DJ., Chem. Phys., 1953, 21, 1181.
- 4. Kaliyappan T and Kannan P. Prog. Polym.Sci., 2000,25(3), 343.
- 5. Vogel AI. A Textbook of Quantitative Chemical Analysis, 5th ed.; revised by Besselt, Denny J, R.C.; Jeffery JH.; Mendham, J. ELBS: London, 1996.
- 6. Patel RD, Patel HS and Patel SR, Eur. Polym.J., 1987, 23, 229.
- 7. Karampurwala AM, Patel RP and Shah JR, Angew. Makromol.Chem, 1980, 87, 87.
- 8. Rana AK; Shah NR; Karampurwala AM and Shah JR, Makromol. Chem, 1981, 182, 3387.
- 9. Patel KD and Panchani SC, Ulter of Phy. Science., 2003, 15, 195.
- 10. Patel HS, Dixit RB and Shah TB, Int. J. Polym. Material., 2001, 49, 271.
- 11. H Horowitz, Perros, JP. J. Inorg. Nucl. Chem. 1964, 26, 139.
- 12. Bailer, Jr., CJ.; Judd, ML.; McLean, M.J. Coordination Polymers (WADC Technical Reports), 1959, 116, 58–51 lpar;Part II).
- 13. Patel, RD.; Patel, SR.; Patel, HS. Eur. Polym. J. 1987, 23, 229.
- 14. Patel, KD.; Pachani, SC.; Dixit, RB. Int. J. Inorganic and Orgeno Metallic Polymers 2003.
- 15. Ferreira PC Arg. Biol. 34, 134 (1950).
- 16. Patel HS.; Patel VK. Indian J. Hetrocycl Chem. 2003, 12, 253.
- 17. Vogel AI Textbook of Quantitative Chemical Analysis, 4th ed.; ELBS: London, 1978.
- 18. Murrey, PR.; Baran, EJ.; Pfuller, MA.; Tenovov, F.C.; Yolken, R.H. An Antimicrobial Agent and Susceptibility Testing; Americal Soc. Microbiology:Washington, DC,1995, p. 1327.
- 19. Phillips JP, Elbinger RL and Merritt LL, J Am Chem Soc., 1949, 71, 3984.
- 20. Silverstein RM., Spectrometric Identification of organic compounds, 1991 5th Ed. John wiley,.
- 21. Kemp W, Organic Spectroscopy, 1998.ELBS.(Macmillan' UK),.
- 22. K.C. Satpathy, A.K. Pande, R.Mishra, I.Panda, Synth. React. Inorg. Met. Org. Chem. 1991, 21, 531.
- 23. Hathway BJ.; Tomilson, AA.G. Coord Chem. Rev. 1980, 5, 1.
- 24. Pancholi HB.; Patel MM. J. Polym. Mater. 1996, 13, 261-267.
- 25. Carlin RN and Van Dryneveldt A, J, Magnetic properties of Transition Metal Compound, Springe-Verlag, NY, 1997.
- 26. Papplardo, R, J. Chem. Phys. 1960, 33, 613.

- 27. Lewis, J.; Wilkins, R.S. Modern Coordination Chemistry; New York, 1960, p. 290.
- 28. Figgis BN and Lewis J, The Magneto Chemistry of Coordination polymer in Modern Coordination Chemistry, Interscience, New York, 1960.
- 29. Williams JO, Adv Phys Org Chem., 1979, 15, 159..
- 30. Patel IJ and Vohra IM, E Journal of Chemistry, 2006, 3(2), 110-116.
- 31. Harsfall JG. Quantitative bioassay of fungicides in the laboratory. Bot.Rev. 1945; 11:357-397.
