

International Journal of PharmTech Research CODEN (USA): IJPRIF ISSN : 0974-4304 Vol.5, No.4, pp 1664-1669, Oct-Dec 2013

An Expeditious Synthesis Some Pyrrolo[1,2-a]Quinoline Derivatives

Abdellah Ech-chahad¹*, Hanane Farah², Abdeslam Lamiri²

 ^{a1}National Institute of Medicinal and Aromatic Plants, BP 159, 34000 Taounate, Morocco.
²Faculty of Sciences and Technical, BP 577, 26000 Settat, Morocco.

*Corres. Author: echchahad@gmail.com. Tel.: +212 662796559; fax: +212 55685900.

Abstract: Starting from 2-nitrophenylacetic acid, the synthesis of some pyrrolo[1,2-a]quinoline derivaives has been reduced to an experimentally simple three-step operation.

Keywords: Pyrrolo[1,2-a]quinoline, 2-nitrophenylacetic acid, 2-aminophenylacetic acid, Pd/C catalysed hydrogenolysis, ammonium formate.

Introduction and Experimental

The interest in pyrrolo[1,2-a]quinolines is due to their potential biological activity and attractive physicochemical properties¹⁻⁴. Also the skeleton of pyrrolo[1,2-a]quinoline is present in gephyrotoxin, a natural alkaloid which was the subject of many investigations⁵⁻⁸. We undertook the synthesis of the novel heterocycle pyrrolo[1,2-a]quinoline in one of our previous works with a view to bring new findings to these investigations. The route to the target compound cannot sidestep 2-aminobenzoic acid as the central moiety to any further elaboration, where the product 2-(1-pyrrolyl)phenylacetic acid stands as a key precursor⁹. Difficulties hitherto encountered relate in particular to the instability of the 2-(1-pyrrolyl)benzoyl chloride intermediate and to the use of the highly toxic, as well as explosive, diazomethane used for conversion of the latter to the phenylacetic structure *via* chain-lengthening¹⁰. We present here an expeditious synthesis of some pyrrolo [1,2-a]quinoline derivatives where choice of 2-nitrophenylacetic acid as the commercially available starting material, instead of 2-aminophenylbenzoic acid, helps prevent such problems and leads straightforwardly to the critical 2-(1-pyrrolyl)phenylacetic acid system.

Melting points were determined on a Boëtius hot plate microscope and are uncorrected. The IR spectra were recorded on a Nicolet Impact 410 spectrometer, in KBr pellets. The NMR spectra were recorded on a Varian Gemini 300 BB instrument, operating at 300 MHz for ¹H-NMR and 75 MHz for ¹³C-NMR, the multiplicities were determined through DEPT. Mass spectra were recorded on a Varian MAT 311 spectrometer.

1. Preparation of 2-aminophenylacetic acid derivatives 2(a-c)

Substituted ortho-nitrophenylacetic acid 1 (a-b) (5.52 mmol) was added to a solution of Pd/C (20 %) and an excess of ammonium formate in 20 ml of EtOH. The mixture was stirred and refluxed for 2 hours, then filtered and concentrated *in vacuo*. The reaction mixture was poured into H2O and extracted with Et_2O . The organic solution was dried over MgSO₄ and evaporated. The residue was recrystallized from petroleum ether.

a. 2-aminophenylacetic acid 2a

Yield=72%; mp =124 °C. ¹H NMR (CDCl₃, 300 MHz): 6.46 (dd, 1H, H3); 6.94 (t, 1H, H4); 6.62 (t, 1H, H5); 6.93 (dd, 1H, H6); 3.62 (s, 2H, CH₂); 4,3 (br s, 2H, NH₂); 5.0 (br s, 1H, OH). ¹³C.NMR (CDCl₃, 75 MHz); 121.9 (C1); 148.4 (C2); 115.8 (C3); 128.4 (C4); 119.3 (C5); 130.9 (C6); 32.6 (CH₂); 178,5 (CO). IR (KBr) : 3200 (OH), 1685 (C=O), 3300 (NH₂), 3400 (NH₂). HRMS, m/z: 151(M), calcd. for C₈H₉NO₂ : 151.060, found: 251.093.

b. (2-Amino-5-methyl-phenyl)-acetic acid 2b

Yield=72%; mp =146°C. ¹H NMR (CDCl₃, 300 MHz): 6.33 (d, 1H, H3); 6.74 (d, 1H, H4); 6.74 (s, 1H, H6); 2.47 (s, 3H, CH₃); 3.60 (s, 2H, CH₂); 4,27 (br s, 2H, NH₂); 5.2 (br s, 1H, OH). ¹³C.NMR (CDCl₃, 75 MHz); 122.4 (C1); 146.0 (C2); 116.3 (C3); 129.2 (C4); 129.3 (C5); 132.5 (C6); 23.1 (CH₃); 33.5 (CH₂); 178,1 (CO). IR (KBr) : 3200 (OH), 1685 (C=O), 3300 (NH₂), 3400 (NH₂). HRMS, m/z: 165(M), calcd. for C₉H₁₁NO₂ : 165.070, found: 165.079.

c. (2-Amino-5-chloro-phenyl)-acetic acid 2c

Yield=72%; mp =153 °C. ¹H NMR (CDCl₃, 300 MHz): 6.19 (d, 1H, H3); 6.79 (d, 1H, H4); 6.83 (s, 1H, H6); 3.45 (s, 2H, CH₂); 4,27 (br s, 2H, NH₂); 5.1 (br s, 1H, OH). ¹³C.NMR (CDCl₃, 75 MHz); 123.5 (C1); 146.7 (C2); 117.3 (C3); 128.2 (C4); 124.5 (C5); 131.2 (C6); 31.5 (CH₂); 177.9 (CO). IR (KBr) : 3200 (OH), 1685 (C=O), 3300 (NH₂), 3400 (NH₂). HRMS, m/z: 185(M), calcd. for C₈H₈ClNO₂ : 185.020, found: 185.024.

2. Preparation of 2-(1-pyrrolyl)phenylacetic acid derivatives 3(a-c)

2-aminophenylacetic acid derivatives 2(a-c) (1.98 mmol) was stared and refluxed for 3 hours with 4-chloropyridinium chlorohydrate (7.9 mmole), and 2,5-dimethoxytetrahydrofurane (15 mmol) in 20 ml of dioxane. Having removed the solvent *in vacuo*, The reaction mixture was poured into H2O and extracted with Et₂O. The organic solution was dried over MgSO₄ and evaporated. The residue was recrystallized from petroleum ether.

a. 2-(1-pyrrolyl)phenylacetic acid 3a

Yield=65%; mp= 40°C. ¹H NMR (CDCl₃, 300 MHz): 6.76 (dd, 1H, H3); 7.24 (t, 1H, H4); 6.92 (t, 1H, H5); 7.23 (dd, 1H, H6); 3.42 (s, 2H, CH₂); 6.85 (d, 2H, H2'H5'); 6.26 (t, 2H, H3'H4'); 4.9 (br s, 1H, OH).

¹³C.NMR (CDCl₃, 75 MHz); 126.6 (C1); 142.4 (C2); 120.4 (C3); 127.5 (C4); 125.5 (C5); 130.6 (C6); 34.1 (CH₂); 179,0 (CO); 119.5 (C2'); 110.6 (C3'); 110.6 (C4'); 119,5 (C5'). IR (KBr) : 3500 (OH), 1720 (C=O). HRMS, m/z: 201(M), calcd. for C₁₂H₁₁NO₂: 201.070, found: 201.079.

b. 5-Methyl-2-(1-pyrrolyl)phenyl acetic acid 3b

Yield=47%; mp= 86°C. ¹H NMR (CDCl₃, 300 MHz): 6.93 (d, 1H, H3); 7.34 (d, 1H, H4); 7.34 (s, 1H, H6); 2.67 (s, 3H, CH₃); 3.80 (s, 2H, CH₂); 6,94 (d, 2H, H2'H5'); 6.39 (t, 2H, H3'H4'); 5.7 (br s, 1H, OH). ¹³C.NMR (CDCl₃, 75 MHz); 126.8 (C1); 138.2 (C2); 120.7 (C3); 128.3 (C4); 134.6 (C5); 131.6 (C6); 34.1 (CH₂); 22.1 (CH₂); 178,4 (CO); 119.2 (C2'); 110.4 (C3'); 110.4 (C4'); 119,2 (C5'). IR (KBr) : 3350 (OH), 1720 (C=O). HRMS, m/z: 215(M), calcd. for $C_{12}H_{11}NO_2$: 215.090, found: 215.091.

c. 5-Chloro-2-(1-pyrrolyl)phenyl acetic acid 3c

Yield=57%; mp= 106°C. ¹H NMR (CDCl₃, 300 MHz): 6.39 (d, 1H, H3); 7.01 (d, 1H, H4); 7.15 (s, 1H, H6); 3.75

(s, 2H, CH₂); 6,75 (d, 2H, H2'H5'); 6.36 (t, 2H, H3'H4'); 4.9 (br s, 1H, OH). ¹³C.NMR (CDCl₃, 75 MHz); 128.3 (C1); 139.8 (C2); 122.1 (C3); 128.3 (C4); 131.0 (C5); 131.1 (C6); 32.4 (CH₂); 178,2 (CO); 119.2 (C2'); 110.3 (C3'); 110.3 (C4'); 119,2 (C5'). IR (KBr): 3500 (OH), 1720 (C=O). HRMS, m/z: 235(M), calcd. for $C_{12}H_{10}CINO_2$: 235.038, found: 235.04.

3. Preparation of pyrrolo[1,2-a]quinoline derivatives 4(a-c)

2-(1-pyrrolyl)phenylacetic acid derivatives **3(a-c)** (0.5 mmole) was stired and refluxed for 4 hours with 2 ml of acetic anhydride. Having removed the solvent *in vacuo*, the reaction mixture was stirred with 4 ml of saturated NaHCO₃ solution for 1 hour. After the mixture was diluted with H₂O and the aqueous mixture was extracted twice with ether, the ether fraction were combined, washed with water, and dried over MgSO₄, and the solvent was removed in *vacuo*. The residue was recrystallized from petroleum ether.

a. 4-Acetoxy pyrrolo[1,2-a]quinoline 4a

Yield=47%. ¹H NMR (CDCl₃, 300 MHz): 8.29 (d, 1H, H1); 6.89 (t, 1H, H2); 6.53 (d, 1H, H3); 7.12 (s, 1H, H5); 7,97 (d, 1H, H6); 7.8 (t, 2H, H7H8); 8.37 (d, 1H, H9); 3.05 (s, 3H, CH₃). ¹³C.NMR (CDCl₃, 75 MHz); 113.2 (C1); 114.3 (C2); 99.6 (C3); 145.4 (C4); 143.3 (C5); 126.2 (C6); 128.1 (C7); 127,4 (C8); 126.7 (C9); 128.9 (C10); 129.0 (C11); 146,1 (C12); 168.4 (CO); 17.1 (CH₃). IR (KBr): 1750 (CO); 1650; 1540; 1460. HRMS, m/z: 225(M), calcd. for $C_{14}H_{11}NO_2$: 225.070, found: 225.079.

b. 4-Acetoxy-7-methyl pyrrolo[1,2-a]quinoline 4b

Yield=56%; mp=78°C. ¹H NMR (CDCl₃, 300 MHz): 7.23 (d, 1H, H1); 6.73 (t, 1H, H2); 6.33 (d, 1H, H3); 7.72 (s, 1H, H5); 7,57 (s, 1H, H6); 7.46 (d, 1H, H8); 8.37 (d, 1H, H9); 3.15 (s, 3H, CH₃); 3.24 (s, 3H, CH₃). ¹³C.NMR (CDCl₃: 75 MHz); 113.3(C1); 114.2 (C2); 99.5 (C3); 144.4 (C4); 143.7 (C5); 125.2 (C6); 128.4 (C7); 125.8 (C8); 136.3 (C9); 129.9 (C10); 128.1 (C11); 143.7 (C12); 168.1 (CO); 17.3 (CH₃); 21.5 (CH₃).

IR (KBr): 1750 (CO); 1490; 1420; 1360. HRMS, m/z: 239(M), calcd. for C₁₅H₁₃NO₂: 239.090, found: 239.095.

c. 4-Acetoxy-7-chloro pyrrolo[1,2-a]quinoline 4c

Yield=66%; mp= 40°C. mp =108 °C. ¹H NMR (CDCl₃, 300 MHz): 7.19 (d, 1H, H1); 6.69 (t, 1H, H2); 6.23 (d, 1H, H3); 7.82 (s, 1H, H5); 7,78 (s, 1H, H6); 7.57 (d, 1H, H8); 8.11 (d, 1H, H9); 2.24 (s, 3H, CH₃). ¹³C.NMR (CDCl₃, 75 MHz): 113.2 (C1); 114.4 (C2); 99.4 (C3); 145.3 (C4); 144.3 (C5); 125.7 (C6); 128.9 (C7); 126,1 (C8); 132.8 (C9); 129.9 (C10); 139.1 (C11); 144,1 (C12); 168.2 (CO); 17.0 (CH₃). IR (KBr): 1750 (CO); 1490; 1430; 1360; 1250; 1200. HRMS, m/z: 259(M), calcd. for $C_{15}H_{13}NO_2$: 259.038, found: 259.040.

Results and Discussion

The reduction of 2-nitrophenylacetic acid derivatives 1(a-c) to the corresponding amine 2(a-c) using classical reducing reagents such as Iron in acidic media¹¹, Sodium hydrosulfite¹², Tin(II) chloride (Faul et al., 2005), Samarium¹³, Sodium sulfide¹⁴, Raney nickel and hydrazine at 0-10 °C (Ayyangar et al., 1984) and Zinc metal in aqueous ammonium chloride¹⁵ gave the oxyindol with intramolecular cyclisation (Scheme 1).

Scheme 1

This problem was overcome, with a good yield, by Pd/C catalysed hydrogenolysis using ammonium formate as a source of hydrogen¹⁶. With a Clauson-Kaas reaction¹⁷, 2-aminophenylacetic acid derivatives 2(a-c) was then heated to reflux with stirring in dioxane, in the presence of 4-chloropyridinium chlorohydrate and 2,5-dimethoxytetrahydrofurane to obtain 2-(1-pyrrolyl) phenylacetic acid derivatives 3(a-c), whose cyclisation was accomplished by heating at reflux in acetic anhydride¹⁸, finally leading to the target compound pyrrolo[1,2-a]quinoline derivatives 4(a-c).

1. Preparation of 2-aminophenylacetic acid derivatives 2(a-c)

2-aminophenylacetic acid derivatives $2(\mathbf{a-c})$ were prepared starting from 2-nitrophenylacetic acid derivatives $1(\mathbf{a-c})$ via catalytic hydrogenation using and an excess of ammonium formate in EtOH. The mixture was stirred and refluxed for 2 hours then filtered and concentrated *in vacuo* (Scheme 2). After dilution of the reaction mixture with ethyl acetate, washing with brine, and evaporation, the reaction mixture, was crystallized from hexane, affording 2-aminophenylacetic acid derivatives $2(\mathbf{a-c})$ in 72% yield.

The identification of the aminophenylacetic acid derivatives 2(a-c) was based on spectroscopic data. In the ¹HNMR spectra of these products, we noted the appearance of the signal as the massif at 3.6 due to protons of amine group NH₂.

2. Preparation of 2-(1-pyrrolyl)phenylacetic acid derivatives 3(a-c)

For the synthesis of the 2-(1-pyrrolyl)phenylacetic acid derivatives 3(a-c), we have used the Clauson-Kaas reaction (Clauson-Kaas et al., 1952), the reaction between the 2-aminophenylacetic acid derivatives 2(a-c) and 2,5-dimethoxytetrahydrofurane was heated to reflux and stirring in dioxane, in the presence of 4-chloropyridinium chlorohydrate to obtain 2-(1-pyrrolyl)phenylacetic acid derivatives 3(a-c). (Scheme 2)

The identification of the 2-(1-pyrrolyl)phenylacetic acid derivatives 3(a-c) was based on spectroscopic data. In the ¹HNMR spectra of these products, we noted the disappearance of the massif at 3.6 due to protons NH₂ and the appearance of two singlets at 9.16 and 9.91 due to protons of the pyrrolyle group.

3. *Preparation of pyrrolo[1,2-a]quinoline* derivatives 4(a-c)

2-(1-pyrrolyl)phenylacetic acid derivatives 3(a-c), whose cyclisation was accomplished by heating at reflux in acetic anhydride, finally leading to the target compound pyrrolo[1,2-a]quinoline derivatives 4(a-c) (Scheme 2). The identification of the *pyrrolo*[1,2-a]quinoline derivatives 4(a-c) was based on spectroscopic data. In the ¹HNMR spectra of these products, we noted the appearance of the singlet at 2.45 due to protons of methyl of acetoxyl group.

1a R = H

1c R = C1

 $1b R = CH_3$

Conclusion

In conclusion, by Pd/C catalysed hydrogenolysis with conversion of 2-nitrophenylacetic derivatives to the corresponding amine in excellent yield, the synthesis of novel heterocycle pyrrolo[1,2-a]quinoline has been reduced to an experimentally simple tree-step operation. The structures of obtained products were established with spectroscopic data of proton and carbon 13 NMR, mass.

Acknowledgement

We thank Dr. Francesco Maneri for help and the ministry of education, higher education and scientific research, Morocco, for support.

References

- 1. Cappelli, A., Giuliani, G., Anzini, M., Riitano, D., Giorgi, G., Vomero, S., 2008. *Bioorg. Med. Chem.* 16, 6850.
- 2. Anderson, W. K., De Ruiter, J., Heider, A. R., 1985. J. Org. Chem. 50, 722.
- 3. Anderson, W. K., Heider, A. R., Raju, N., Yucht, J. A., 1988. J. Med. Chem. 31, 2097.
- 4. Jones, D. T., Harris. A. L., 2006. Mol. Cancer Ther. 5, 2193.
- 5. Tokuyama, T., Uenoyama, K., Brown, G., Daly, J. W., Witkop, B., 1974. Helv. Chim. Acta. 57, 2597.
- 6. Pearson, W. H., Fang, W., 2000. J. Org. Chem. 65, 7158.
- 7. Wei, L.-L., Hsung, R. P., Sklenicka, H. M., Gerasyuto, A. I., 2001. Angew. Chem., Int. Ed. 40, 1516.
- 8. Santarem, M., Vanucci-Bacqué, C., Lhommet, G., 2008. J. Org. Chem. 73, 6466.
- 9. Bouyazza L., Lancelot J.-C., Rault S., Robba M., 1991. J. Heterocyclic Chem. 28, 77.
- 10. Aoyama, T., Shioiri, T., 1980. Tetrahedron Lett. 21, 4461.
- 11. Fox, B. A., Threlfall, T. L., 1973. Org. Synth. 5, 346.
- 12. Redemann, C. T., Redemann, C. E., 1955. Org. Synth. 3, 69.
- 13. 13 Basu, M. K., 2000. Tetrahedron Lett. 30, 41.
- 14. Hartman, W. W., Silloway, H. L.1984. Synthesis 11, 938.
- 15. Kamm, O., 1941. Org. Synth. 1, 445.
- 16. Jiro T., Teruo S., Masami Y., Ichiro M., 1986. Chem. Commun., 922-924
- 17. Clauson-Kaas, N., Tyle, Z., 1952. Acta Chem. Scand. 6, 667.
- 18. Avetisyan, S. A., Korachov, S. L., Azaryan, L. V., Karapetyan, A. A., Struchkov, T., 1995. Chemistry of Heterocyclic Compounds 31, 28.
