

International Journal of PharmTech Research CODEN (USA): IJPRIF Vol.4, No.1, pp 432-451, Jan-Mar 2012

Dendrimer: Globular Nanostructured Materials for Drug Delivery

B.N.Vedha Hari^{1*}, K.Kalaimagal, R.Porkodi, Pradeep Kumar Gajula, J.Y.Ajay

Department of Pharmaceutical Technology, School of Chemical and Biotechnology, SASTRA University, Thanjavur-613 401.Tamil Nadu, India.

¹Department of Pharmacy, School of Chemical and Biotechnology, SASTRA University, Thanjavur-613 401.Tamil Nadu, India.

*Corres.author: vedhahari@scbt.sastra.edu

Abstract: Nanotechnology is an emerging research field that helps in reviving the structural design, synthesis and fabrication at the molecular magnitude. There are approximately 130 nanopharmaceutical products in development including~nanoparticles, nanocrystals, dendrimers, liposomes and micelles. The increase in the selectivity and stability of therapeutic agents can be achieved with the help of Nanoparticle drug-delivery system. But due to several factors such as drug leakage, reticuloendothelial system, (RES) uptake, immunogenicity, hydrophobicity, hemolytic toxicity, cytotoxicity, the use of nanostructures are restricted. These challenges can be overcome by surface engineering the dendrimer with bioactive agents either encapsulating into the interior of the dendrimer or by physically adsorbing them onto the surface of the demdrimer. Thus this surface engineering help to achieve the desired properties of the carrier as per the requirement of the active ingredient and it also gives an access for new potentially relevant polymer architectecture Some of the examples for surface engineering of dendrimers are Polyester dendrimer, Arginine dendrimer, Glycodendrimers, Citric acid dendrimer ,PEGylated dendrimers, etc. **Key words:** Dendrimers, nanostructured drug carriers, drug delivery.

INTRODUCTION

Dendrimers are repeatedly branched macromolecules or nano-sized, radially symmetric molecules with welldefined, homogeneous and monodisperse structure consisting of tree-like arms or branches. The name comes from the~Greek~word Dendron which translates to tree. Dendrimers are globular or spheroid nanostructures that are engineered to encapsulate the molecules into their interior void spaces or to attach onto the surface [1]. Shape, size, and reactivity are determined by interior branching. surface functionalities, generation (shells) and chemical composition of the core. Dendrimers are constructed through a set of repeating chemical synthesis procedures that build up from the molecular level to the nanoscale region under conditions that are easily

performed in a standard organic chemistry laboratory. The dendrimer diameter increases linearly where as the number of surface groups increases geometrically. Dendrimers are very uniform with extremely low polydispersities, and are generally created with dimensions incrementally grown in approximate nanometer steps from 1 to over 10nm. The control over size, shape and surface functionality makes dendrimers one of the commercially available smartest nanotechnologies [2]. Divergent synthesis was the first introduced method for the production of dendrimers by Vogtle in 1978, Denkewalter at~Allied Corporation~as in 1981 Donald Tomalia at Dow Chemical in 1983 [3] and 1985[4] and by Newkome [5,6] in 1985. In 1990 a convergent synthetic approach was newly introduced by Jean Frechet after which dendrimer popularity

increased to a rate of more than 5,000 scientific papers and patents by the year 2005.

CLASSIFICATION OF DENDRIMERS:

The following classification for the commonly reported dendrimer types although few dendrimer types may fit in one or more types of classes.

- a. Simple dendrimers
- b. Liquid crystalline dendrimers
- c. Chiral dendrimers
- d. Micellar dendrimers
- e. Hybride dendrimers
- f. Amphiphilic dendrimers
- g. Metallodendrimerrs

STRUCTURE

Dendrimer formation is initialised from an atom such as nitrogen onto which carbon and other elements are attached by repeating series of chemical reactions to produce a spherical branching structure. The resulting dendrimers will have a size similar to albumin and hemoglobin, but smaller size than multimers such as the IgM antibody complex.

Dendrimers possess three distinguished components[8],[9] namely,

An initiator multi-functional core

- (i) Interior layers (generations) with repeated branching units, which are radically attached to the core
- (ii) Exterior surface functional group (terminal functionality) attached to the outermost interior layers.

Figure 1: General structure of Dendrimer and Dendron.

Figure 2: The Dendritic Structure

COMPONENTS OF A DENDRIMER STRUCTURE PINCER

The outer shell of dendrimers contains a varying number of pincers formed by the last focal point headed before the dendrimer surface. Due to the division in the chain of dendrimers at the focal points, the number of pincers in the PPI and PAMAM dendrimers becomes half the number of the surface groups present.

SHELL

The dendrimer shell is the generation space (i.e the homo-structural spatial segment) between the focal points. The space between the last outer branching point and the surface is the outer shell and the inner shells are generally known as the dendrimer interior.

GENERATION

It is the hyperbranching when going from the centre of the dendrimer towards the periphery, resulting in homostructural layers between the focal points (branching points). Generation number is the number of focal points present in the dendrimer counting from the core towards the dendrimer surface i.e a dendrimer having five focal points when moving from the centre towards the periphery is signified as the 5th generation dendrimer and abbreviated as G5-dendrimer.

E.g: A 5th generation polypropylene imine is abbreviated to a G5-PPI dendrimers. The core of the dendrimer is sometimes designated as generation zero (G0) i.e the core structure have no focal points, as hydrogen substituents are not considered as focal points. Intermediates formed during the dendrimer synthesis are sometimes termed as half-generations; for example the PAMAM dendrimers terminated with carboxylic acid.

END-GROUP

End groups are generally referred as the the surface group of the dendrimer or terminal group. Dendrimers terminated with amine end-groups are named as amino-terminated dendrimers.

TYPES OF DENDRIMERS

Types	Definition	Synthesis	Example	Applications
Pamam Dendrimer Pamamos Dendrimer	Poly (amidoamine) dendrimers possess amino groups on the surface. Inverted unimolecular micelles consists of	Divergent Convergent and Divergent	Dendritech TM (USA) SARSOX	Material Science and Biomedicine Computer toners Nano-lithography Electronics
	hydrophilic nuclephilic PAMAM interiors and hydrophobic organosilicon(OS) exteriors.			Photonics Chemical catalysis Precursor for honey- comb like network preparations.
PPI dendrimer	Poly-alkyl amines having primary amines as end groups and its interior consists of numerous tertiary tris- propylene amines.	Divergent	Asramol by DSM (Netherlands)	Material science and biology
Tecto dendrimer	Composed of a core dendrimer with multiple dendrimers at its periphery	Divergent	Stratus® CS Acute Care TM, Starburst®,Mercap to	Diseased cell recognition Diseased state drug delivery diagnosis Reporting location to outcome of therapy
Chiral dendrimers	Chilarity is based on construction of constitutionally different but chemically similar branches to a chiral core.	convergent	chiral dendrimers derived from pentaerythritol.	Biomedical applications, chiral catalyst
Hybrid dendrimers	Combination of dendritic and linear polymer in hybrid block or graft copolymer forms	Divergent	Hybrid dendritic linear polymer, Polysilsesquioxane s	Biomedicals, Molecular electronics, Nanophotonics,Sensing.
Amphiphili c dendrimers	Unsymmetical globular dendrimers built with two segregated sites of chain end.	Divergent	SuperFect, Hydra- amphiphiles and bola-amphiphiles	Structure-directing agent, Use as polar part, cell and gene transfection.
Micellar dendrimers	Unimolecular micelle structure of Water soluble hyperbranched polyphenylene	Divergent	Beclomethazone dipropionate, NX- 200, Magnevist®	Biological and medical applications,Drug delivery, Imaging agent.
Multiple antigen peptide dendrimers	Dendron-like molecular construct based upon a polylysine skeleton.	Convergentsy nthesis	VivaGel	Used in vaccines and diagnostic research. Biological applications.

Frechet- type dendrimers	Dendrimes having carboxylic acid groups as surface groups and containing poly-benzyl ether hyperbranced skeleton.	Convergentsy nthesis	Frechet type dendron azides, Priostar [™]	Drug carrier, Purifiers, Organic synthesis, detecting agent, drug delivery.
Liquid crystalline dendrimers	Consists of mesogenic monomers	divergent	Polycanter liquid crystals, Mesogen functionalized carbosilane dendrimers	Science and Engineering.
Metallo dendrimers	Dendrimers with incorporated metal atoms	Convergent	Zinc Porphyrin dendrimers(M=Zn)	Sensing Catalytic applications, mimic biomolecules, light- harvesting, Biomarkers.
Peptide dendrimers	Dendrimers having peptides on the surface and incorporating amino acids as branching or core units.	Convergentsy nthesis	, Beta- Casomorphin(hum an)	Drug delivery contrast agents for MRI, MRA, fluorogenic imaging and sero diagnosis, protein mimetic.

SYNTHESIS

Three major portions in dendrimers are: a core, an inner shell and an outer shell. Ideally, a dendrimer with different functionality in each of these components can be synthesized to control properties such as thermal stability, solubility and attachment of compounds for certain applications. Synthetic processes can also precisely control the size and number of branches on the dendrimer. Dendrimers are perfect artificial macromolecules, which are synthesized by a stepwise method such as divergent and convergent synthesis. The synthesis reactions include many steps required to protect the active site and it is complicated to synthesize dendrimers in all the methods. Thus dendrimers are hard to make and very expensive. At few companies commercialise present, only dendrimers; eg Polymer Factory [12] commercializes biocompatible bis-MPA dendrimers and Dendritech[13] is the producers of PAMAM dendrimers. Figure 4: Schematic of divergent and convergent method synthesis of dendrimers.

1. DIVERGENT METHODS

This method starts from a central core and extends towards the surface by a series of reactions, commonly a Michael reaction [14]. Dendrimers are polymers that radiate out from a central core, with the number of branch points on a given arm increasing exponentially from the core to the periphery. Every step of the reaction should reach an absolute completeness to prevent errors in the dendrimer, which might cause trailing generations (branches with unequal length). Such impurities can affect the functionality and symmetry of the dendrimer, but due to the relative small size difference between perfect and imperfect dendrimers , they are extremely difficult to purify out .The divergent approach is a successful method for the production of large quantities of dendrimers.

2. CONVERGENT METHODS

Construction of dendrimer in thismethod is an stepwise process which begins from the end groups and progresses inwards[15. When the growing branched polymeric arms, called dendrons, are large enough, they are attached to a multifunctional core molecule. This method prevents the formation of high shells due to the chance of steric problems that might take place in the reactions of the dendrons and the core molecule. This is a relatively easy approach to eliminate impurities and to form shorter branches along the way, finally to form a monodispersed dendrimer.

GENERAL PROPERTIES OF DENDRIMERS:

Dendritic molecules are characterized by structural perfection. Dendrimers and dendrons are monodisperse, usually highly symmetric and spherical compounds. The field of dendritic molecules can be divided into high-molecular weight and low-molecular weight species. The former includes hyperbranched polymers, dendronized polymers and the polymer brush while the latter includes dendrons , dendrimers etc.

The multiple interactions between surface amines and nucleic acid phosphates are also significant for the formation of dendrimers and DNA complexes. Solubility of the dendrimers depends on the nature of surface groups. Dendrimers with hydrophilic groups at ends are soluble in polar solvents, while dendrimers that terminate with hydrophobic groups are soluble in nonpolar solvents. In a solubility test with tetrahydrofuran (THF) as the solvent, the solubility of dendritic polyester was found remarkably higher than that of analogous linear polyester and a significant chemical reactivity also observed.

Serial	Property	Dendrimers	Linear Polymers
Number			
1	Structure	Compact and Globular	Not compact
2	Shape	Spherical	Random coil
3	Architecture	Regular	Irregular
4	Structural control	Very high	Low
5	Synthesis	Stepwise growth	Single step polycondensation
6	Crystallanity	Non-crystalline and amorphous	Semi crystalline/crystalline
		materials	materials
		Lower glass temperatures	-Higher glass temperatures
7	Reactivity	High	Low
8	Aqueous solubility	High	Low
9	Nonpolar solubility	High	Low
10	Viscosity	Non linear relationship with	Linear relation with molecular
		molecular weight	weight
11	Ionic conductivity	High	Low
12	Compressibility	Low	High
13	Polydispersity	Monodi sperse	Polydisperse

 Table 1: Properties Of Dendrimer And Linear Polymers [16],[17],[18],[19],[20]

VARIOUS FACTORS AFFECTING THE PROPERTIES OF DENDRIMERS

1. EFFECT OF PH ON DENDRIMERS[22]

At high pH the dendrimer is uncharged and the formation of any DNA-dendrimer complex is not seen. At neutral pH, when the dendrimer is positively charged due to the protonation of all the primary amines, the strong electrostatics interaction helps the DNA strand collapse onto the dendrimer. Aminoterminated PPI and PAMAM dendrimers have basic surface groups as well as a basic interior. PPI and PAMAM dendrimers that contains tertiary amines, the region with low pH extends the conformations because of the electrostatic repulsion between the positively charged ammonium groups. Molecular dynamics can be applied to find the structural behaviour of PAMAM dendrimers as a function of pH which show that the dendrimer has an extended conformation, based on a highly ordered structure at low pH (pH<4). At this pH, the interior becomes hollow with the increase in the generation number due to the repulsion between the positively charged amines both at the tertiary amines in the interior and surface of the dendrimer. At neutral pH, back-folding occurs due to the hydrogen bonding between the positively charged amines at the surface and the uncharged tertiary amines in the interior. At higher pH (pH>10) the dendrimer contracts as the charge of the molecule gets neutralised, attaining a more spherical (globular) structure, where the repulsive forces between the surface groups and the dendrimer arms reaches a minimum.[23] At this pH, the conformation has a higher degree of back-folding as a result of the weak inter-dendron repulsive forces.[24],[25] The pH-dependent conformational changes of PPI dendrimers having acidic (carboxylic acid) end-groups is different as compared to aminoterminated counterparts. Measurement of self diffusion using Small angle neutron scattering (SANS) and

NMR at different pH values show that the dendrimer core has the most extended conformation at pH 2 due to the electrostatic repulsion between the positively charged protonated tertiary amines, leading to a large radius of the core, whereas at pH 6 the dendrimer reaches its minimum radius, where the amount of positively charged amines equals the amount of negatively charged carboxylic groups (isoelectric point) forming a dense core conformation which is more subjective to back-folding [26]. Thus, at pH 6 due to the attractive interactions between the negatively charged surface carboxy-groups and the positively charged tertiary amines in the inner shells of the dendrimer, some degree of back-folding [26]. At pH 11 the electrostatic repulsion between the negative charged forces the surface groups apart to give a more extended conformation with a highly expanded surface area.

2. EFFECT OF SOLVENT ON DENDRIMERS

Conformational state of the dendrimer can be investigated according to the solvent ability to solvate the dendrimer structure. With the decrease in solvation dendrimers of all generations generally experience a larger extent of back-folding. The highest tendency towards back-folding is shown by the low generation dendrimers due to poor solvation compared to the higher generation dendrimers. NMR studies performed on PPI dendrimers reveals that a nonpolar solvent like benzene, poorly solvates the dendrons favouring intramolecular interactions between the dendrimer segments and back-folding. In turn, a weakly acidic solvent like chloroform can act as a hydrogen donor for the interior amines in a basic dendrimer like PPI, leading to an extended conformation of the dendrimer because of extensive hydrogen bonding between the solvent and the dendrimer amines[27].

Figure 5: Two dimensional depiction of conformational changes upon different pH of a carboxy-terminated PPI-dendrimer

Increasing pH

Figure 6: Two dimensional depiction of conformational changes upon different pH of a carboxy-terminated PPI-dendrimer

Both experimental as well as theoretical studies on amino-terminated PPI and PAMAM dendrimers (polar dendrimers) show that a higher molecular density is induced when polar (good) solvents solvate the dendrimer arms whereas higher molecular densities in the core regionis induced by nonpolar aprotic (poor) solvents as a result of back-folding [28].Decrease in the surface polarity of back folded dendrimer can be achieved by the back-folding of the polar surface groups which may expose the more hydrophobic dendrimer parts to the surroundings [29],[30]. Figure 6: Proposed scheme for solvation of a dendrimer under different solvent conditions. (a) Solvation of a polar dendrimer in a protic solvent ("good") leading to extended conformation exposing a polar surface. (b) Solvation of a polar dendrimer in an apolar aprotic solvent ("poor") leading to exposure of an apolar surface consisting of alkyl chains by back-folding.

3. EFFECT OF SALT ON DENDRIMERS

Salts with high ionic strength (high concentration of salts) has a strong effect on charged PPI dendrimers and favours a contracted conformation of dendrimers, with a high degree of back-folding somewhat similar to what is observed upon increasing pH or poor solvation[31],[32]. At low salt conditions, in order to minimize charge repulsion in the structure the repulsive forces between the charged dendrimer segments forms an extended conformation.

4. EFFECT OF CONCENTRATION OF SOLVENTS, SALTS

In dendrimers with flexible structures the conformation is affected by small molecules like solvents, salts or protons and larger objects, such as other dendrimers or surfaces which can have a great affect on the molecular conformation and density of the dendrimer. Small angle X-ray scattering (SAXS) experiments performed on PPI dendrimers (G4, G5) with a polar solvent like methanol show that the molecular conformation of dendrimers contracts with increase in the concentration. This molecular contraction may minimize the repulsive forces between the dendrimer molecules and also the ability of the dendrimers to exhibit a more tight intermolecular packing can be increased [33].

METHODS FOR CHARACTERIZATION OF DENDRITIC POLYMER

The methods that can be used for characterization of dendritic polymers are:[34]

1. Spectroscopy and spectrometry methods~like Nuclear Magnetic Resonance (NMR), Optical rotation ,Infra-red (IR) and Raman, Ultra-violetvisible (UV-VIS), X-ray diffraction, Fluorescence, Chirality, Circular dichroism (CD) and Mass spectrometry.

Nuclear Magnetic Resonance (NMR): Nuclear Magnetic Resonance is widely used in characterizing dendrimers. NMR analysis are done routinely during the step by step synthesis of dendrimers till higher generations as it gives information about the chemical transformations undergone by the end groups.

Infra-red (IR) and Raman: Infra-red spectroscopy is mainly used for the routine analysis of the chemical transformations occurring at the surface of dendrimers, such as the disappearance of nitrile groups in the synthesis of PPI dendrimers, the occurrence of hydrogen bonding in PPI glycine functionalized dendrimers, or the disappearance of the aldehydes during the synthesis of PMMH dendrimers. Ultra-violet-visible (UV-VIS): UV-Visible spectroscopy can be used to monitor the synthesis of dendrimers. UV-Visible spectrometry for its simplicity, versatility, speed, accuracy and costeffectiveness.

Fluorescence: In fluorescence spectroscopy, the species is first excited, by absorbing a~photon, from its ground electronic state to one of the various vibrational states in the excited electronic state. When collided with other molecules, this collision causes the excited molecule to lose vibrational energy and reach the lowest vibrational state of the excited electronic state.

The molecule then drops down to one of the various vibrational levels of the ground electronic state again, emitting a photon in the process. Thus, the emitted photons will have different energies and frequencies. Fluorescent spectroscopy used to analyse the different frequencies of emitted light along with their relative intensities, the structure of the different vibrational levels can be determined.

Chirality: Chiral amino acids linked to the surface of PPI dendrimers induce a dramatic decrease of optical rotation on going from G1 to G5 [35], rigid paracyclophanes on the surface of PPI dendrimers have a nearly constant optical activity with increasing generation [36], whereas chiral benzylamine[37] or ferrocene [38] linked to the surface of PMMH dendrimers give simply additive optical rotation values. When a single chiral group such as aminophenylpropanediol [39] or binaphthyl [40] is located at the core of PBzE dendrimers, the optical rotation decreases with the increase in generation. In the latter case, the CD data affords information about the variation of the dihedral angle u in the binaphthyl [41]. For fully chiral dendrimers (throughout the structure), the chiroptical properties of two series of chiral polyarylether dendrimers from generation 0 to 3 (up to 45 stereogenic centres) [42] and of dendrimers based on dihydroxypyrrolidine [43] show that the CD spectra change dramatically, indicating conformational substructures in the branches. On the other hand, the CD spectra of a series of fully chiral dendrimers of phenylalanine type up to G2 show little steric interaction, but molar rotation divided by the number of stereogenic centres decreases with increasing size of the dendritic structure [44]. On the contrary, the molar rotation of a series of polyether dendrimers up to G4 is approximately proportional to the number of chiral units [45]. For dendrimers having one layer of chiral ferrocenes located inside the structure, the chiroptical properties are not

sensitive to the location of the chiral units inside the dendrimers, up to G11.

Circular dichroism (CD): Circular dichroism (CD) spectroscopy measures the difference in the absorption of left-handed polarized light versus right-handed polarized light which occurs due to structural asymmetry. The absence of regular structure results in zero CD intensity, while an ordered structure results in a spectrum which can contain both positive and negative signals.

X-ray diffraction: This technique should allow precise determination of the chemical composition, size and shape of dendrimers. X-ray diffraction (XRD) is a versatile, non-destructive technique that reveals detailed information about the chemical composition and crystallographic structure of natural and manufactured materials. Mass spectrometry: Classical mass spectrometry techniques such as chemical ionization or fast atom bombardment (FAB) are used for the characterization of small dendrimers, whose mass is below 3000 D due to their mass limitation [46]. higher molecular weights, techniques For developed for the characterization of proteins and polymers have to be applied. Electro-Spray Ionisation (ESI) can be used for dendrimers able to form stable multicharged species. It has been applied to PPI dendrimers[47], and to PAMAM dendrimers up to generation 10 [48]. The dendrimers were also characterized by mass spectrometry matrix-assisted using laser desorption ionization (MALDI). MALDI-TOF Mass spectrometry was used to obtain the molecular weight information and to determine the purity, existence of dimers, trimers, and trailing generations in the sample.

2. Electrical techniques like Electron paramagnetic resonance (EPR), Electrochemistry, and Electrophoresis. Electron paramagnetic resonance (EPR): Stable radicals have been either grafted on the surface of dendrimers or generated inside the structure at the branching points and analysed by EPR. EPR was used for the quantitative determination of the substitution efficiency on the surface of PAMAM dendrimers [49] or was able to detect interactions between the end groups of large PPI dendrimers[50].

Electrochemistry: Exhaustive coulometry has been used to measure the number of electroactive groups. The degree of burying of electroactive groups inside dendrimers can be detected by cyclic voltammetry. Electrochemistry gives information about the possibility of interaction [51] of electroactive end groups between them, traducing a close proximity. Electrophoresis: This technique was used for the assessment of purity and homogeneity of several types of water-soluble dendrimers such as PAMAM dendrimers having NH3 + or CO2 end groups[52] PLy dendrimers [53], PPI dendrimers nucleic dendrimers [54], acid [55], or Gel phenylacetylene dendrimers [56]. electrophoresis was also used for studying the interaction between positively charged dendrimers and DNA.

3. Scattering techniques like Small angle neutron scattering (SANS), Small angle X-ray scattering (SAXS) and Laser light scattering (LLS). Small angle X-ray scattering (SAXS): The SAXS technique is often used for the characterization of polymers [57]; applied to dendrimers it gives information about their average radius of gyration (Rg) in solution. The intensity of the scattering as a function of angle also provides information on the arrangement of polymer segments, hence on the segment density distribution within the molecule. This technique was applied to fluorinated carbosilane dendrimers [58] and PAMAM dendrimers [59] to afford their Rg values. The angular dependence of the scattered intensity indicates a relatively diffuse, open boundary for G3 PAMAM, and a very sharp outer boundary for G10, with a gradual transition from star-like (G3) to sphere-like (G10) entities [60].

Small Angle Neutron Scattering (SANS): The SANS technique also gives access to the radius of gyration, but may also reveal more accurate information than SAXS about the internal structure of the entire dendrimer. In particular, SANS may indicate the molecular weight; such experiments have been conducted with PPI [61], PAMAM [62] and PBzE dendrimers [63]. The location of the end groups has also been determined by SANS experiments conducted with PAMAM dendrimers and PPI dendrimers having labelled (deuterated) or unlabelled end groups; in the former case, the end groups are concentrated near the periphery [64], whereas in the latter cases the end groups are located throughout the structure [65]. A recent extension of this technique (neutron spin-echo) was applied to PAMAM dendrimers[66]. This also been applied to aggregates of PBzE dendrimers having a phthalocyanine core, and to vesicles formed by the self-assembly.

Laser light Scattering (LLS): In most cases, the Laser Light Scattering technique is used as a detector coupled to size exclusion chromatography apparatus (see later), to determine the hydrodynamic radius of dendrimers. However, in some cases, it has been used for the direct analysis of samples of dendrimers in solution; for instance, the molecular weight (Mw) of PPI dendrimers has been evaluated with low-angle LLS [67]. Dynamic LLS is mainly used for the detection of aggregates; it has been applied to aggregates of PBzE dendrimers having a phthalocyanine core [68], and to vesicles formed by the self-assembly of some water soluble PMMH dendrimers [69].

 Microscopy like Scanning electron microscopy, Transmission electron microscopyand atomic force microscopy

Transmission electron microscopy: In Transmission Microscopy, electrons or light produce images that amplify the original, with a resolution ultimately limited by the wavelength of the source. Scanning electron microscopy: In scanning microscopy such as Atomic Force Microscopy (AFM), the images are produced by touch contact Q at a few angstroms of a sensitive cantilever arm with the sample.

Atomic force microscopy: The AFM, however, has the advantage of imaging almost any type of surface, including polymers, ceramics, composites, glass, and biological samples.

5. Size exclusion chromatography(SEC) Size Exclusion (or Gel Permeation) Chromatography allows the separation of molecules according to size. A detector such as a differential refractive index or a LLS detector (see above) is connected to the SEC apparatus for the determination of the polydispersity, which is generally very close to unity. Most types of dendrimers were characterized by SEC, even self-assembled dendrimers.

Rheology, physical properties by Dielectric 6. spectroscopy (DS) and Differential Scanning Calorimetry (DSC) Differential Scanning Calorimetry (DSC): The DSC technique is generally used to detect the glass transition temperature (Tg), which depends on the molecular weight, entanglement and chain-end composition of polymers. The Tg is affected by the end group substitutions, and the molecular mass for PBzE dendrimers [70], and correlates with ne /M (ne is the number of chain ends) [71]. The same behaviour was observed for phosphorus dendrimers [72], and to a lesser extent for PPI dendrimers [73], whereas the generation has practically no influence on the Tg values of liquid crystal dendrimers based on poly(phenyl acetylene) [74] or carbosilazane dendrimers [75]. DSC and Temperature Modulated Calorimetry (TMC) were also used to detect physical aging of PMMH dendrimers [76].

Dielectric spectroscopy (DS): Dielectric spectroscopy gives information about molecular dynamic processes in polymers (a-, h-, g-, and y-

relaxation). This technique was applied to various types of dendrimers, and it was generally found that the a-relaxation values obtained by DS agree well with those obtained in Differential Scanning Calorimetry measurements. Carbosilane [77], ARB [78], poly(ether amide) [79] PMMH[80],[81] and carbosilazane dendrimers [82] were analyzed by DS; in most cases, both the a- and hrelaxations were obtained and identified.

7. Miscellaneous: X-ray Photoelectron Spectroscopy (XPS): it s useful for the measurements of dipole moments, titrimetry, and uses soft x-rays (with a photon energy of 200-2000 eV) to examine corelevels .The XPS technique is highly surface specific due to the short range of the photoelectrons that are excited from the solid. The energy of the photoelectrons leaving the sample are determined using a~CHA~and this gives a spectrum with a series of photoelectron peaks. The binding energy of the peaks are characteristic of each element. The peak areas can be used (with appropriate sensitivity factors) to determine the composition of the materials surface. The shape of each peak and the binding energy can be slightly altered by the chemical state of the emitting atom. Hence XPS can provide chemical bonding information as well. XPS is not sensitive to hydrogen or helium, but can detect all other elements.

APPLICATION OF DENDRIMERS:

1. DENDRIMERS DRUG DELIVERY: TARGETED AND CONTROLLED RELEASE DRUG DELIVERY

here are attempts to use dendrimers in the targeted delivery of drugs and other therapeutic agents. Drug molecules can be loaded both in the interior of the dendrimers as well as attached to the surface groups. Dendrimers have drawn attention as drug carriers due to their unique properties mainly their well defined three-dimensional structure, their low polydispersity, the availability of many functional surface groups and their ability to mimic. Dendrimers can act as drug carriers either by interacting with drugs at their terminal functional groups via covalent bonds or electrostatic forces (prodrug) or by the encapsulation of drugs within the dendritic structure. Dendrimers can be used as coating agents to protect or deliver drugs to specific sites in the body or as time-release vehicles for biologically active agents. Therapeutic agents can also be attached to a dendrimer to direct the delivery. A good example of such application is using dendrimers in Boron Neutron Capture Therapy (Bnct).

2. DELIVERY OF ANTICANCER DRUGS BY DENDRIMERS AND DENDRITIC POLYMERS

Cancer is caused by damage of genes which control the growth and division of cells. Cancer can be cured by rectifying the damaging mechanism of the genes or by stopping the blood supply to the cell or by destroying completely using the conventional treatments such as surgery, radiation therapy and chemotherapy. These treatments have their own limitations. Hence certain nanoparticles can be designed to absorb certain wavelength of radiation, which burns the cancer cells. In specific Nanoparticles, a single dendrimer can carry a molecule that recognize cancer cells, a therapeutic agent to kill those cells and a molecule that recognize the signal of cell death. Researchers hope to manipulate dendrimers to release their contents only in the presence of certain trigger molecules associated with cancer [84].

 Table 2: Major Technologically Important Factors

Factor	Application	Small angle	Small angle	Transmission
		neutron	neutron	electron
		scattering	scattering	microscopy
Segment Distribution	Solubilization	+	++	+
Type of Branching	Major cost	+	+	+
	Diffferences			
Terminal Group location	Attachment	++	+	-
	Networks			
Dendrimer-dendrimer Interactions	Ordering	+	++	+
	Nanostructures			
Size Variation	Standards	+	+	-
With solvent	Release			

Key to symbols: ++, best technique for measurement: +, acceptable technique for measurement: -, unsuitable for measurement.

The star polymer gave the most promising results regarding cytotoxicity and systemic circulatory halflife (72 h). With the improvement of drug properties such as plasma circulation time and solubility, polymeric carriers can also facilitate the passive targeting of drugs to solid tumors. Combined, these factors lead to the selective accumulation of macromolecules in tumor tissue - a phenomenon termed the Enhanced Permeation and Retention (EPR) effect [72]. Therefore, the anticancer drug doxorubicin was covalently bound to this carrier via an acid-labile hydrazone linkage. Hence the drug doxorubicin was successfully taken up by several cancer cell lines at reduced cytotoxicity. The studies on adriamycin and methotrexate anticancer drugs on the encapsulation behavior of these demdrimers shows that the highest encapsulation efficiency, with on average 6.5 adriamycin molecules and 26 methotrexate molecules per dendrimer, was achieved for the G4 PAMAM terminated with PEG2000 chains. 5-Fluorouracil (5FU) is known to have remarkable antitumour activity, but it has high toxic side effects. PAMAM dendrimers after acetylation can form dendrimer-5FU conjugates. The dendrimers are water soluble and hydrolysis of the conjugates releases free 5FU. The slow release reduces 5FU toxicity. Such dendrimers seem to be potentially useful carriers for antitumour drugs. The anticancer drug 5-fluorouracil encapsulated into G4 PAMAM dendrimers with carboxymethyl PEG5000 surface chains showed a reasonable drug loading with reduction in the release rate and hemolytic toxicity compared to the non-PEGylated dendrimer[88]. In contrast, up to 24 drug molecules were encapsulated into the hyper branched polyol and successful delivery of the drug into lung epithelial carcinoma cells was achieved by the dendrimers. Recent studies shows that low generation PAMAM dendrimers using Caco-2 cell lines cross cell membranes mostly by a combination of two processes, i.e., paracellular transport and adsorptive endocytosis, while cell efflux systems have a minor effect.[85] The encapsulation of anticancer drugs methotraxate and 5fluorouracil into PEGylated generation 3 and 4 **PAMAM** dendrimers

3. DENDRIMER AS SOLUBILITY ENHANCERS

Poly(lysine) dendrimers attached with sulfonated naphthyl groups as antiviral drugs seems to be effective against the herpes simplex virus which can potentially decrease the transmission of HIV and other sexually transmitted diseases (STD) [88]. Studies also show that when PAMAM dendrimer surface is covalently modified with naphthyl sulfonate residues it shows antiviral activity against HIV. This dendrimer based nano-drug can thus inhibit the early stages of virus cell adsorption and later stages of viral replication by hindering the reverse transcriptase and/or integrase enzyme activities. PPI dendrimers modified with tertiary alkyl ammonium groups at the surface is found to be an effective antibacterial biocide against Gram positive and Gram negative bacteria. Poly (lysine) dendrimers with mannosyl groups attached to the surface found to be potent inhibitors of the E. coli adhesion to horse blood cells in a haemagglutination assay, making these structures potential antibacterial agents. Chitosan dendrimer hybrids reveal to act as promising carriers in the field of drug delivery systems, antibacterial agents and in other biomedical applications.

4. CELLULAR DELIVERY USING DENDRIMER CARRIERS

Poor solubility of drugs in pharmaceutically acceptable solvents restricts their use for therapeutic purposes even with their strong therapeutic activity. But now water soluble dendrimers are able to bind and solubilize small acidic hydrophobic molecules with antibacterial properties or antifungal. Unimolecular micelles are Dendrimers with a hydrophobic core and a hydrophilic surface layer. As dendrimers don't have a critical micelle concentration it gives an opportunity for poorly soluble drugs to solubilise by encapsulating them within the dendritic structure at all concentrations of dendrimer. A hydrophilic and hydrophobic coreshell dendrimer with PAMAM interior and long alkane chain exterior was shown to bind 5-flurouracil, a water-soluble anti-tumor drug [86]. It was seen that the oral bioavailability in rats of 5-flurouracil was doubled compared to free 5-flurouracil when the dendrimer fatty acid macromolecule was given with phospholipid coating. Thus Dendrimer-based carriers can be a promising method to enhance the oral bioavailability of poorly soluble drugs.

5. DENDRIMERS AS NANO-DRUGS

he studies on dynamics of cellular entry into A549 human lung epithelial carcinoma cells with a range of PAMAM dendrimers (G4-NH2, G3-NH2, G4-OH, PEGlayted G3 [G3-PEG]) and a hyper branched polymer (polyol) showed that G4-NH2and G4-OH dendrimers entered cells more rapidly than G3-NH2, polyol or G3-PEG. The rapid entry of G4-NH2~ into the cells might be due to its cationic nature of the amine surface groups, that may interact electrostatically with negatively charged epithelial cells and enter by pinocytosis [88]. Absence of cationic surface groups on polyol and G3-PEG, their cellular entry occurs by non-specific adsorption to the cell membrane and subsequent endocytosis. It's also seen that dendrimers can efficiently carry the complexe drugs to the interior of the cells for example Dendrimer ibuprofen complexes can enter more rapidly into the ceels than the pure drug (1 hr versus > 3 hr).

6. DENDRIMERS IN PHOTODYNAMIC THERAPY

Scientists have also studied the use of dendrimers in the sensor technologies. By attaching The photosensitizer 5-aminolevulinic acid to the surface of dendrimers it can be used as an agent for PDT of tumorigenic keratinocytes .The photo sensitive dyes incorporated into dendrimers are utilized in PDT devices[88]. For cancer treatment the light activated photosensitizing drug administered which selectively concentrates in diseased tissue. Appropriate unfunctionalisation of dendrimers can make them a promising carrier for photosensitizers for example ALA a natural precursor of the photosensitizer protoporphyrin IX (PIX) administered to increase cellular concentrations of PIX [87].

7. DENDRIMERS IN GENE TRANSFECTION

In the field of gene therapy dendrimers can act as vectors for example PAMAM dendrimers that has

been tested as carriers for the genetic material. Numerous reports reveals that to enhance the transfection of DNA into the cell nucleus by endocytosis can be enhanced by using aminoterminated PAMAM or PPI dendrimers as non-viral gene transfer agents[88]. A transfection reagent called SuperFectTM that have activated dendrimers can carry a larger amount of genetic material compared to viruses. SuperFect-DNA complexes have high stability and provide more efficient transport of DNA into the nucleus than liposomes. The cause for this high transfection efficiency of dendrimers may be due to their well-defined shape and low pK of the amines (3.9 and 6.9). The low pK permit the dendrimer to buffer the pH change in the endosomal compartment. Luciferase gene expression shown by PAMAM dendrimers functionalized with cyclodextrin seems to be 100 times higher than for unfunctionalized PAMAM or for non-covalent mixtures of PAMAM and cyclodextrin. Better gene delivery process was shown by dendrimers with high structural flexibility and partially degraded high generation dendrimers⁹³ (i.e., hyper branched architectures) than the intact high generation symmetrical Dendrimers.

Figure 7: Dendrimer involved in gene transfection

ENCAPSULATION OF DRUGS INTO DENDRIMERS ARCHITECTURE

Drug	Therapeutic activity	Nature of drug	Inference
Artemether	treat multi-drug resistant	Poor solubility	Solubility enhancement between
	strains of malaria		factors 3-fold to 15-fold has been
			observed, depending on concentration and size of the
			dendritic micelles.
Camptothecin	anticancer drug that	very low water	A newly developed dendrimer
	damages DNA, leading to	solubility and	platform,
	cell destruction	adverse side	consisting of poly(etherbydroxylamine) (PEHAM)
			dendrimers, has
			been employed to enhance the water
			solubility of camptothecin
Cignlatin	The entirences dury that	The therease oution	[89].
Cispiatin	alters DNA structure that	effect of cisplatin	of cisplatin within PAMAM
	prevents	is limited by its	dendrimers resulted in complexes
	replication and initiates	poor water	with
	apoptosis	solubility (1	slower release, higher accumulation
		lipophilicity	in solid tumors, and lower toxicity than free cisplatin
		and the	toxicity than nee enspiratin.
		development of	
2110		drug resistance	
Diclotenac	reduce inflammation and		non-steroidal anti-inflammatory
acid	act as analgesic		encapsulated into dendrimers built
			from citric acid-poly(ethylene
			glycol)-
Diflunical	generic NSAID	Low solubility	citric acid triblock copolymers.
Diriuliisai		Low solubility	of diflunisal.
			extremely low water solubility
			of these NSAIDs has been
			significantly improved by PAMAM
Dimethoxycurcumin	ability to induce apoptosis	Poorly soluble in	For improved water solubility.
	in cancer cells	water.	dimethoxycurcumin has been mixed
	without cytotoxic effects on		with PAMAM dendrimers
Dovorubicin	healthy cells	Dadwaad aalubility	dovorphiain has been encongulated
Doxorubicin	to treat some leukemia, Hodgkin's	and has side	into PAMAM dendrimers G3 and
	lymphoma, as well as	effects	G4, which had PEG-monomethyl
	cancers of the bladder,		ether chains of molecular weights
	breast, stomach,		550 and 2000 Da conjugated to
	lung, ovaries, thyroid, soft		their surfaces
	myeloma		
Etoposide	treatment of malignancies	Poor water soluble	In order to increase the water
	such as Ewing's sarcoma,		solubility of
	iung cancer, testicular cancer lymphoma non-		etoposide, micelles composed of block copolymers lipophilic

Table 3: Major Technologically Important Factors

	lymphocytic leukemia, and glioblastoma multiform		poly(e-caprolactone) (PCL) and hydrophilic PEG5000, conjugated to a generation two PAMAM-OH dendrimer as the core, have been synthesized.
5-Fluorouracil	 5-Fluorouracil (5-FU; Fig. 4) is a pyrimidine analogue that belongs to the family of drugs called antimetabolites 	Poorly soluble	A conjugate between PAMAM G4 dendrimer and PEG5000 chains has been utilized in order to improve the solubility of fluorouracil
Ketoprofen	It belongs to the propionic acid class of NSAIDs with analgesic and antipyretic effects.	Poor solubility and bioavailability	The presence of PAMAM dendrimers enhanced the transdermal delivery of ketoprofen, leading to 2.73-fold higher bioavailability compared to suspensions of the pure drug [90]. The solubility of ketoprofen was significantly enhanced by association with PAMAM dendrimers.
Ibuprofen	NSAID, analgesic and anti- inflammatory activity	Less soluble	solubility of ibuprofen can be significantly enhanced by encapsulation into PAMAM dendrimers
Indomethacin	Indomethacin (Fig. 5) is a member of the arylalkanoic acid class of NSAIDs	Indomethacin is poorly soluble in water and sparingly soluble in alcohol	Formulating indomethacin with PAMAM dendrimers G4 with amino, hydroxyl, and carboxylate surface groups enhanced the water solubility of the drug
Methotrexate	an antimetabolite and antifolate drug used in the treatment of many cancers, acts by inhibiting the metabolism of folic acid.	higher doses of MTX often used in cancer chemotherapy can cause toxic effects to the rapidly dividing cells of bone marrow and gastrointestinal mucosa.	methotrexate has been encapsulated into generations 3 and 4 PAMAM dendrimers, which had PEG550 and PEG2000 monomethyl ether chains conjugated to their surfaces to modify bioavailability and toxicity.
Naproxen	used for the reduction of moderate to severe pain, fever, inflammation and stiffness caused by conditions such as osteoarthritis, rheumatoid arthritis and others.	Low soluble	the solubility of naproxen was significantly enhanced by the association with PAMAM dendrimers
Niclosamide	antimicrobial drug	Niclosamide is practically insoluble in water at physiological pH and becomes sparingly soluble over the range of pH 8–10	mixing with PAMAM dendrimers (8.0 mM) containing a primary amine surface significantly enhanced the water solubility of niclosamide
Nifedipine	The NSAID nifedipine is a dihydropyridine calcium	Poorly solubility	the solubility of nifedipine increased with the size of the

	channel		dendrimers. PAMAM
	blocker.		dendrimers enhanced the release rate
			of nifedipine, dependent
			on dendrimer size and concentration.
Quinolones	Quinolones are a family of	Low solubility	The solubility of nadifloxacin and
nadifloxacin	broad-spectrum antibiotics		prulifloxacin was
and prulifloxacin	covering a host of aerobic		significantly enhanced in
	Gram-negative, Gram-		formulations containing PAMAM
	positive and even		dendrimers
	some anaerobic species		G3–5 with amine surface,
	responsible for various		
D 1'4 1		4 111	
Paclitaxel	anticancer drug	poor water soluble	dendrimers
			resulted in 400-fold improved water
			solubility compared to the
			pure drug [91].
Silver salts	antimicrobial		The encapsulation of silver salts
	activity		within PAMAM dendrimers
			produced conjugates exhibiting slow
			silver release rates and antimicrobial
			activity against various Gram-
			positive bacteria [92].
Sulfamethoxazole	sulfonamide antibacterial	SMZ is sparingly	Association with PAMAM
	drug	soluble in water,	dendrimers
		causing	G2-4 in low $(3-9 \text{ mM})$ concentration
		problems in its	range enhanced the
		clinical	aqueous solubility of
		applications.	dondrimor
			dendimen
			concentration
			concentration.

CONCLUSION

The dendrimers can have a promising future in various pharmaceutical and diagnostic fields as they possess distinct properties such as multivalenc, high degree of branching, globular architecture and well-defined molecular weight, thus presenting new scaffolds for drug delivery. The increasing challenges of newly developed drugs such as poor solubility, bioavailability

REFERENCES

- [1] Nanjwade, Basavaraj K, Bechraa HM, Derkara GK, Manvia FV, Nanjwade VK. Dendrimers: Emerging polymers for drug-delivery systems. European Journal of Pharmaceutical Sciences (Elsevier) 2009;38:185-96.
- [2] Peeyush Kumar, Meena K P, Pramod Kumar, Champalal Choudhary, Devendra Singh Thakur,

and permeability can be resolved with the help of dendrimers. The advancement in synthesis of dendrimers help to produce different structure at low cost and careful surface engineering can eliminate the problem of biocompatibility and toxicity. Hence the increased research in the field of dendrimers promises its utility for wide range of application in drug delivery systems.

Pranav Bajpayee. Dendrimer: A novel Polymer for drug delivery. JITPS, 2010; 1: 252-69.

- [3] Tomalia DA, Baker H, Dewald J, Hall M, Kallos G, Martin S, Roeck J, Ryder J,Smith. P. A New Class of Polymers: Starburst-Dendritic Macromolecules. Polymer Journal 1985;17:117.
- [4] <u>http://findarticles.com/p/articles/mi_m1200/</u> is_n2_v149/ai_17817461/

- [5] Newkome GR, Zhongqi Yao, Baker GR, Gupta VK, Micelles. Part 1. Cascade molecules: a new approach to micelles. A arborol, Journal of Organic chemistry 2003;50.
- [6] Pushkar S, Philip A, Pathak K, Pathak D. Dendrimers: Nanotechnology Derived Novel Polymers in Drug Delivery. Indian J. Pharm. Educ. Res 2006;40:153-8.
- [7] Frechet JMJ, Tomalia DA. Introduction to the Dendritic state, Dendrimers and other Dendritic Polymers. John Wiley & Sons Ltd 2001;23-4.
- [8] Sakthivel T, Florence AT. Adsorption of Amphipathic Dendrons on Polystyrene Nanoparticles. Int. J. Pharm 2003;254:23-6.
- [9] Yiyun C, Zhenhua X, Minglu M and Tonguen X. Dendrimers as Drug Carriers: Applications in Different Routes of Drug. J.Pharma.Sci 2008;97:123-43.
- [10] Svenson S, Tomalia DA. Dendrimers in biomedical applications reflections on the Field, Advanced Drug Delivery Reviews 2005;57:2106 -29.
- [11] Holister, Roman PCV, Harper T, Dendrimers: Technology White Papers. Cientifica. Retrieved 2010;17.
- [12] Polymer Factory AB, Stockholm, Sweden. Polymer Factory.
- [13] Dendritech Inc., from Midland, Michigan, USA Dendritech.
- [14] Jain NK, Khopade AJ, Dendrimers as potential delivery systems for bioactives. N.K.Jain, Editor, Advances in controlled and novel drug delivery, CBS Publishers & Distributors, New Delhi, 2001; 361-80.
- [15] Barbara K, Maria B, Dendrimers: properties and applications, Acta Biochimica Polonica: 2001; 48 (1), 199-208.
- [16] Duncan R, Izzo L, Dendrimers biocompatibility and toxicity, Adv Drug Deliv Rev: 2005; 57, 2215-37.
- [17] Chen H T, Neerman M F, Simanek E E, Cytotoxicity hemolysis and acute in vivo toxicity of dendrimers based on melamine, candidate vehicles for drug delivery, J Am. Chem. Soc: 2004; 126, 10044-48.
- [18] Jeyprasesphant R, Penny J, Jalal R, Attwood D, Mckeown N B, Emanuele D, The influence of surface modification on the cytotoxicity of PAMAM dendrimers, Int. J. Pharm: 252; 263-6.
- [19] EI-Sayed M, Ginski M, Rhodes C, Ghandehari H, Trans epithelial transport of poly(amidoamine)

dendrimers across Caco₂ cell monolayers, J. Control Release: 2002; 81, 355-65.

- [20] Fischer LY, Ahlemeyer B, Krieglestein J, Kissel T, In vitro cytotoxicitytesting of polycations: influence of polymer structure on cell viability and shemolysis, Biomaterials: 2003; 24, 1121-31.
- [21] Chai M, Niu Y, Youngs WJ, Rinaldi PL, Structure and conformation of DAB dendrimers in solution via multidimensional NMR techniques. J. Am. Chem. Soc 2001;123:4670-78.
- [22] Beezer AE, King AS, Martin IK, Mitchel JC, Twyman LJ, Wain CF, Denddrimers as potential drug carriers; encapsulation of acidic hydrophobes within water soluble PAMAM dendrimers. Tetrahedron: 2003; 59:3873-80.
- [23] Lee I, Athey BD, Wetzel AW, Meixner W, Baker JR, Macromolecules: 2000; 35, 4510.
- [24] Terao T, Nakayama T, Macromolecules, 2004; 34,4686.
- [25] Wang DJ, Imae T, Journal of the American Chemical Society: 2004; 126,13204.
- [26] Rietveld IB, Bouwman WG, Baars MWPL, Heenan RK, Macromolecules: 2001; 34, 8380.
- [27] Chai M, Niu Y, Youngs WJ, Rinaldi PL, Journal of the American Society: 2001; 123, 4670.(26 chapter 1).
- [28] Butler J E, Nessler N R, Joshi K S, Suter M, Rosenberg B, Chang J, Brown WR, Cantro LA, Journal of Immunological Methids: 1992; 150, 77.
- [29] Recker J, Tomcik DJ, Parquatte JR, Journal of the American Chemical Society: 2000; 122, 10298.
- [30] Backer SD, Prinzie Y, Verheijen W, Smet M, Desmedt K, Dehaen W, Deschryver FC, Journal of Physical Chemistry: 1998; 102, 5451.
- [31] Welch P, Muthukumar M, Macromolecules, 1998; 31,5892.
- [32] Ramzi A, Scherrenberg, Joosten J, Lemstra P, Mortensen K, Macromolecules, 2002; 35, 827.
- [33] Topp A, Bauer BJ, Prosa J, Scherrenberg, Amis EJ, Macromolecules, 1999; 32, 8923.
- [34] Caminade AM, Laurent R, Majoral JP, Characterization of dendrimers, Advanced Drug Delivery Reviews: 2005; 57, 2130-46.
- [35] Jansen JFGA, Peerlings HWI, de Brabandervanden Berg EMM, Meijer EW. Optical activity of chiral dendritic surfaces. Angew. Chem., Int. Ed. Engl 1995;34:1206–9.
- [36] Issberner J, Bohme M, Grimme S, Nieger M, Paulus W, Vogtle F. Poly(amine/imine)

dendrimers bearing planar chiral terminal groups—synthesis and chiroptical properties. Tetrahedron: Asymmetry 1996;7:2223–32.

- [37] Lartigue ML, Caminade AM, Majoral JP. Chiroptical properties of dendrimers with stereogenic end groups. Tetrahedron: Asymmetry 1997;8:2697–708.
- [38] Turrin CO, Chiffre J , Daran JC, de Montauzon D, Caminade AM, Manoury E, Balavoine G, Majoral JP. New chiral phosphorus-containing dendrimers with ferrocenes on the periphery, Tetrahedron 2001;57:2521–36.
- [39] Chaumette JL, Laufersweiler MJ, Parquette JR. Synthesis and chiroptical properties of dendrimers elaborated from a chiral, nonracemic central core, J. Org. Chem 1998;63:9399–405.
- [40] Chen YM, Chen CF, Xi F, Chiral dendrimers with axial chirality, Chirality 1998;661–6.
- [41] Rosini C, Superchi S, Peerlings HWI, Meijer EW. Enantiopure dendrimers derived from the 1,1V-binaphthyl moiety: a correlation between chiroptical properties and conformation of the 1,1V-binaphthyl template. Eur. J. Org. Chem 2000;61–71.
- [42] Murer P, Seebach D. Synthesis and properties of first to third generation dendrimers with doubly and triply branched chiral building blocks, Angew. Chem. Int. Ed. Engl 1995;34:2116–9.
- [43] Cicchi S, Goti A, Rosini C, Brandi A. Enantiomerically pure dendrimers based on a trans-3,4-dihydroxypyrrolidine, Eur. J. Org. Chem 1998;2591–7.
- [44] Ritzen A, Frejd T, Chiral. polyionic dendrimers with complementary charges—synthesis and chiroptical properties, Eur. J. Org. Chem 2000;3771–82.
- [45] Chang HT, Chen CT, Kondo T, Siuzdak G, Sharpless KB. Asymmetric dihydroxylation enables rapid construction of chiral dendrimers based on 1,2-diols, Angew. Chem., Int. Ed. Engl 1996;35:182–6.
- [46] Hawker CJ, Frechet JMJ. Preparation of polymers with controlled molecular architecture. A new convergent approach to dendritic macromolecules, J. Am. Chem. Soc 1990;112:7638–47.
- [47] Hummelen JC, Van Dongen JLJ, Meijer EW. Electrospray mass spectrometry of poly(propylene imine) dendrimers— the issue of dendritic purity or polydispersity, Chem. Eur. J 1997;3:1489–93.

- [48] Kallos GJ, Tomalia DA, Hedstrand DM, Lewis S, Zhou J. Molecular weight determination of a polyamidoamine starburst polymer by electrospray-ionization mass spectrometry, Rapid Commun. Mass Spectrom 1991;5:383–6.
- [49] Francese G, Dunand FA, Loosli C, Merbach AE, Decurtins S. Functionalization of PAMAM dendrimers with nitronyl nitroxide radicals as models for the outer-sphere relaxation in dendritic potential MRI contrast agents, Magn. Reson. Chem 2003;41:81–3.
- [50] Bosman AW, Janssen RAJ, Meijer EW. Five generations of nitroxyl-functionalized dendrimers, Macromolecules 1997;30:3606–11.
- [51] Cuadrado I, Casado CM, Alonso B, Moran M, Losada J, Belsky V. Dendrimers containing organometallic moieties electronically communicated, J. Am. Chem. Soc 1997; 119: 7613–4.
- [52] Brothers HM, Piehler LT, Tomalia DA. Slab-gel and capillary electrophoretic characterization of polyamidoamine dendrimers, J. Chromatogr 1998;814:233–46.
- [53] Welch CF, Hoagland DA. The electrophoretic mobility of PPI dendrimers: do charged dendrimers behave as linear polyelectrolytes or charged spheres? Langmuir 2003;19:1082–8.
- [54] Hudson RHE, Damha MJ. Nucleic acid dendrimers: novel biopolymer structures, J. Am. Chem. Soc 1993;115:2119–24.
- [55] Pessac DJ, Moore JS, Wheat TE Synthesis and characterization of water-soluble dendritic macromolecules with a stiff, hydrocarbon interior, Macromolecules 1997;30:6467–82.
- [56] Chu B, Hsiao BS. Small-angle X-ray scattering of polymers, Chem. Rev 2001;101:1727-62.
- [57] Omotowa BA, Keefer KD, Kirchmeier RL, Shreeve JM. Preparation and characterization of nonpolar fluorinated carbosilane dendrimers by APcI mass spectrometry and small-angle X-ray scattering. J. Am. Chem. Soc 1999;121:11130–8.
- [58] Prosa TJ, Bauer BJ, Amis EJ, Tomalia DA, Scherrenberg R. A SAXS study of the internal structure of dendritic polymer systems, J. Polym. Sci. Part B, Polym. Phys 1997;2913–24.
- [59] Prosa TJ, Bauer BJ, Amis EJ. From stars to spheres: a SAXS analysis of dilute dendrimer solutions, Macromolecules 2001;34:4897–906.
- [60] Potschke D, Ballauff M, Lindner P, Fischer M, Vogtle F. Analysis of the structure of dendrimers in solution by smallangle neutron scattering

including contrast variation, Macromolecules 1999;32:4079-87.

- [61] Topp A, Bauer BJ, Tomalia DA, Amis EJ. Effect of solvent quality on the molecular dimensions of PAMAM dendrimers, Macromolecules 1999;32:7232–7.
- [62] Evmenenko G, Bauer BJ, Kleppinger R Forier B, Dehaen W, Amis EJ, Mischenko N,Reynaers H. The influence of molecular architecture and solvent type on thesize and structure of poly(benzyl ether) dendrimers by SANS, Macromol. Chem. Phys 2001;202:891–9.
- [63] Topp A, Bauer BJ, Klimash JW, Spindler R, Tomalia DA, Amis EJ, Probing the location of the terminal groups of dendrimers in dilute solution, Macromolecules 1999;32:7226–31.
- [64] Rosenfeldt S, Dingenouts N, Ballauff M, Werner N, Vogtle F, Lindner P, Distribution of end groups within a dendritic structure: a SANS study including contrast.
- [66] Li X, He X, Ng ACH, Wu C, Ng DKP, Influence of surfactants on the aggregation behaviour of water-soluble dendritic phthalocyanine, Macromolecules 2000;33:2119-123.
- [67] Rietveld IB, Smit JAM. Colligative and viscosity properties of poly(propylene imine) dendrimers in methanol, Macromolecules 1999;32:4608–14.
- [68] Li X, He X, Ng ACH, C. Wu, DKP Ng, Influence of surfactants on the aggregation behaviour of water-soluble dendritic phthalocyanine, Macromolecules 2000;33:2119–23.
- [69] Blanzat M, Turrin CO, Perez E, Rico-Lattes I, Caminade AM, Majoral JP. Phosphoruscontaining dendrimers bearing galactosyl ceramide analogs: self-assembly properties, Chem. Commun 2000;1864–5.
- [70] Farrington PJ, Hawker CJ, Frechet JMJ, Mackay MM. The melt viscosity of dendritic poly(benzyl ether) macromolecules, Macromolecules 1998;31:5043–50.
- [71] Wooley KL, Hawker CJ, Pochan JM, Frechet JMJ, Physical properties of dendritic macromolecules: a study of glass transition temperature, Macromolecules 1993;26:1514–9.
- [72] Merino S, Brauge L, Caminade AM, Majoral JP, Taton D, Gnanou Y, Synthesis and characterisation of linear, hyperbranched and dendrimer-like polymers constituted of the same repeating unit, Chem. Eur. J 2001;7:3095–105.
- [73] Tande BM, Wagner NJ, Kim YH. Influence of end groups on dendrimer rheology and

conformation, Macromolecules. 2003; 36: 4619–4623.

- [74] Pesak DJ, Moore JS, Columnar liquid crystals from shapepersistent dendritic molecules, Angew. Chem., Int. Ed. Engl 1997;36:1636–9.
- [75] Elsasser R, Mehl GH, Goodby JW, Veith M, Nematic dendrimers based on carbosilazane cores, Angew. Chem., Int. Ed. Engl 2001;40:2688–90.
- [76] Dantras E, Dandurand J, Lacabanne C, Caminade AM, Majoral JP, Enthalpy relaxation in phosphorus-containing dendrimers, Macromolecules 2002;35:2090–4.
- [77] Trahasch B, Stuhn B, Frey H, Lorenz K. Dielectric relaxation in carbosilane dendrimers with perfluorinated end groups, Macromolecules 1999;32:1962–6.
- [78] Emran SK, Newkome GR, Weis CD, Harmon JP, Molecular relaxations in ester-terminated, amidebased dendrimers, J. Polym. Sci 1999;37:2025– 38.
- [79] Huwe A, Appelhans D, Prigann J, Voit BI, Kremer F. Broad band dielectric spectroscopy on the molecular dynamics in dendritic model systems, Macromolecules 2000;33:3762-6.
- [80] Dantras E, Lacabanne C, Caminade AM, Majoral JP. TSC and broadband dielectric spectroscopic study of relaxation in phosphoruscontaining dendrimers, Macromolecules 2001; 343808–11.
- [81] Dantras E, Dandurand J, Lacabanne C, Caminade AM, Majoral JP. TSC and broadband dielectric spectroscopy studies of alpha relaxation on phosphorus-containing dendrimers, Macromolecules 2004;37:2812–6.
- [82] Tajber L, Kocot A, Vij JK, Merkel K, Zalewska-Rejdak J, Mehl GH, Elsasser R, Goodby JW, Veith M. Orientationalorder and dynamics of nematic multipodes based on carbosilazane cores using optical and dielectric spectroscopy, Macromolecules 2002;35:8601–8.
- [83] Gupta U, Agashe H, Jain NK. Polypropylene imine dendrimer mediated solubility enhancement: effect of pH and functional groups of hydrophobes, J. Pharm. Sci 2007; 10:358-67.
- [84] Om paul S, Nehru RM, Nanotechnology and cancer treatment, Asian Journal of Experimental Science: 2008; 22, 45-50.
- [85] Deborh MS, Kolhatkar RB, Ray A, Swaan P, Ghandehari H, Transepithelial transport of PEGylated anionic poly(amidoamine)dendrimers:

Implications for drug delivery(Elseveir), Journal of Controlled Release: 2009; 138, 78-85.

- [86] Dilipkumar P, Amit KN, Nanotechnology for targeted delivery in cancer therapeutics, 2010; 1(1).
- [87] Wang DJ, Imae T. Fluorescence emission from Dendrimer & its pH dependence, J. Am., Chem. Soc 2004;126:13204-5.
- [88] Sonke S, Tomalia DA. Dendrimers in biomedical applications reflections on the Field, Advanced Drug Delivery Reviews 2005;57:2106 –29.
- [89] Tomali DA, Swanson DR, Huang B, Heinzelmann JR, Svenson S, Reyna LA, Zhuravel, Chauhan AS, DeMattei CR, Dendritic polymers with enhanced amplification and interior functionality, Dendritic Nanotechnologies, Inc., PCT Patent WO: 2006; 115547.

- [90] Cheng Y, Man N, Xu T, Fu R, Wang X, Wang X, Wen L, Transdermal delivery of nonsteroidal anti-inflammatory drugs mediated by polyamidoamine(PAMAM) dendrimers, J. Pharm. Sci.: 2007; 96, 595–602.
- [91] Ooya T, Lee J, Park K, Hydrotropic dendrimers of generations 4 and 5: synthesis, characterization, and hydrotropic solubilization of paclitaxel, Bioconjug. Chem:2004; 15,1221–9.
- [92] Balogh L, Swanson DR, Tomalia DA, Hagnauer GL, McManus AT, Dendrimer–silver complexes and nanocomposites as antimicrobial agents, Nano Letter: 2001; 1,18–21.
- [93] Mukesh Gohel, R K Parikh. Dendrimer : An Overview. 2009 May 16. Available from: www.pharmainfo.net/reviews/dendrimeroverview.
