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Abstract: A highly selective and sensitive method was presented for the determination of V (IV), based on its
catalytic effected on the oxidation reaction of Indigo Carmin by bromate. The reaction was monitored
spectrophotometrically by measuring the decrease in absorbance of Indigo Carmin at 612 nm, between 0.5 to 3 min
(the fixed time method). Three-level orthogonal array design (OAD) was used as a chemometric approach to
optimize the reaction and study the effect of various factors on recovery of extraction.  Factors such as IC
concentration (M); KBrO3 concentration (M); pH and temperature (o C) were obtained.
Key words: orthogonal design, optimization of Indigo Carmine Bromate reaction ,kinetic spectrophotometric
determination ,Vanadium (IV).

Introduction
Chemometric optimization methods have been

applied in all branches of analytical chemistry and
many strategies are available, such as the sequential
simplex method [1], factorial design [2], simulated
annealing [3], retention mapping [4], computer
simulation [5] and multi-criteria design making [6].
Experimental design, as an effective and efficient
optimization strategy has found widespread application
in all branches of analytical chemistry. Statistically,
orthogonal array design has been developed for many
years [7-12].
To study the effect of various factors on the recovery
of the technique and to optimize them in the minimum
number of experiments, three-level orthogonal array
design (OAD) was used as a chemometric approach

[13], [14]. OAD, which is in fact a saturated fractional
factorial design, maintains the merits of factorial
design. On the other hand, the number of experiments
performed by OAD increases arithmetically instead of
geometrically, thus keeping the merits of simplex
optimization. In other words, the use of OAD can
reduce the number of experiments without affecting
the quality of results. The theory and methodology of
OAD as a chemometric method for the optimization of
analytical procedures has been described in detail
elsewhere [15, 16]. In this paper catalytic effect of V
(V) on the oxidation of Indigo carmine by bromide
was considered.  The effects  of  the Factors  such as  IC
concentration (M); KBrO3 concentration (M); pH and
temperature (o C) were studied by a  three-level  OAD
with an OA27(313) matrix.
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Experimental
Reagents
          All reagents were of analytical-reagent grade
and triply distilled water was used throughout. A 1000

µg/mL stock solution of Vanadium (IV) was prepared
by dissolving of 0.3907 gr of VOSO4,2H2O salt
(Merck) in 100 mL of distilled water. Stock solution of
IC (1× 10-3 M) was prepared by dissolving 0.0233 gr of
recrystalized IC (Merck) in distilled water and diluting

to 50 mL. Solutions of pH 1, 3 were prepared by
adding 0.1 M nitric acid (Merck) to sodium acetate
(Merck). Solution of pH 5 was prepared by adding 0.1
M acetic acid (pH 4) to sodium acetate (Merck).  0.022
M solution of potassium bromate was prepared by
dissolving 0.3304 gr of KBrO3 (Merck)  in  water,  in  a
100 mL volumetric flask.

Apparatus
A UV-Visible spectrophotometer (Jenway 3605) was
used. The change in absorbance by time was displayed
on the screen. pH was adjusted by a Jenway 6310 pH
meter. A micropit (1000 μl Eppendorf) was used for
taking different volumes in μl limit.

General procedure
The catalytic reaction was monitored specto -
photometrically by measuring the change in
absorbance of the reaction mixture at 612 nm. The
solutions were prepared in 1 cm, 4 mL glass cell. Four
variables were considered in this work: volume of
Indigo carmine (A), volume of Bromate (B), pH (C),
temperature (D) 1.5 mL of buffer solution was added
to a sample solution containing a μL of IC and B μL of
bromate. The solution was diluted to 3 mL by addition
of appropriate amount of water. For different
experimental trials, the variables were varied with the
level setting shown in table 6 (experimental trial Nos.
1, 2, 5, 9 is in table 2). The cell was inserted in the cell
compartment of the spectrophotometer. A mechanical
stirrer was used to mix the solution in the cell. After 10
seconds 300 μL of vanadium (IV) was added to the
cell by a variable 1000 μL sampler and the variation of
absorbance versus time was measured during a three
minutes interval.

Experimental Design
Matrix Construction

A three-level orthogonal array design, denoted
by OA25+1(3S), is a (2S+1) × S matrix , where S is the
number of the columns, which corresponds to the
factors,  2S+1  is  the  number  of  the  rows,  which
corresponds to the experimental trails. OA27(313)
matrice, which are frequently used three-level
orthogonal array matrices, is displayed in Table 1 .It
can be seen that each of thirteen columns is varied
over three level settings, each level setting repeats nine
times, and thus a total of 3 × 9=27 experimental trials
are necessary for each column. Tables 1 demonstrate

that, in any two columns, the horizontal combination
of any two level numbers appears the same number of
times.

In Table 1 when the nine rows for a column
are at level 1, for any other columns, three of nine
rows are at level 1, three at level 2 , and three at level
3.  Similar  cases  can  be  seen  when  this  column  is  at
other two level settings. The above features of the
OA25+1(3S) matrix provide the orthogonality among all
the S columns. This can be proved by the following
statistical method.

(i) For a three-level factorial design, a quadratic
regression model representing a response surface can
be expressed as:
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Substituting eqns. (3) and (4) into eqn. (2) will lead to
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(ii) Suppose all the thirteen columns in the OA27(313)
matrix are assigned an independent parameter, namely
A, B, …, and M, respectively, and no interactions exist
between parameters; then the third term in eq. (1) can
be neglected, hence eqn. (1) can be rewritten as
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Table (1) The OA27 (313) matrix associated with the analytical results of determination of Vanadium (IV)

* The basic column are shown in bold
Å  Polynomial values excluding 0b  term
 +  Polynomial values including 0b  term
 +  Polynomial values including 0b  term

{ })()(
2
1

1223 XXXXXX rrrr ---=b             (10)

Then, according to eqns. (7) and (8) the response, yi,
for each experimental trial in the OA27 (313) matrix can
be described as follows:
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                                                                     ..(11)

Where K represents the level setting numbers which
are varied with the intersections in the OA27 (313)
matrix.  The  statistical  error  ( ie  ) is an independent
random  variable  from  an  N  (0,  02) distribution.
Therefore,
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 From eqns. (5), (8), (9) and (10), it is clear
that the effect of the factor X at each level in only
dependent on the level means for this factor at
different levels and independent of the effect for any
other factors. Hence, the orthogonality has been
proven.

Note that from eqn. (10) it is convenient to
judge whether second-order effects are present or
absent.  If  for  a  factor  X  the  difference  of  the  level
mean between level 2 and level 1 )( 12 xx rr - is not
significantly different from that between level 3 and
level 2 )( 23 xx rr - , then the second-order effect of the
factor X can be neglected.

Column no.
1 2 3 4 5 6 7 8 9 10 11 12 13

Construction *
Experi
mental Polynomial

Trial
no.

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 y ÅY +ŷ y- ŷ

1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.253 0.521 0.405 -0.152
2 1 1 1 1 2 2 2 2 2 2 2 2 2 0.045 0.117 0.001 0.044
3 1 1 1 1 3 3 3 3 3 3 3 3 3 0.115 0.289 0.173 -0.058
4 1 2 2 2 1 1 1 2 2 2 3 3 3 0.152 0.334 0.217 -0.065
5 1 2 2 2 2 2 2 3 3 3 1 1 1 0.055 0.119 0.002 0.053
6 1 2 2 2 3 3 3 1 1 1 2 2 2 0.105 0.257 0.141 -0.036
7 1 3 3 3 1 1 1 3 3 3 2 2 2 0.236 0.472 0.356 -0.120
8 1 3 3 3 2 2 2 1 1 1 3 3 3 0.081 0.164 0.048 0.033
9 1 3 3 3 3 3 3 2 2 2 1 1 1 0.153 0.309 0.192 -0.039
10 2 1 2 3 1 2 3 1 2 3 1 2 3 0.115 0.165 0.048 0.067
11 2 1 2 3 2 3 1 2 3 1 2 3 1 0.045 0.027 -0.089 0.134
12 2 1 2 3 3 1 2 3 1 2 3 1 2 0.063 0.168 0.051 0.012
13 2 2 3 1 1 2 3 2 3 1 3 1 2 0.045 0.089 -0.028 0.073
14 2 2 3 1 2 3 1 3 1 2 1 2 3 0.033 0.028 -0.088 0.121
15 2 2 3 1 3 1 2 1 2 3 2 3 1 0.038 0.071 -0.046 0.084
16 2 3 1 2 1 2 3 3 1 2 2 3 1 0.085 0.138 0.022 0.063
17 2 3 1 2 2 3 1 1 2 3 3 1 2 0.035 0.039 -0.078 0.113
18 2 3 1 2 3 1 2 2 3 1 1 2 3 0.103 0.204 0.088 0.015
19 3 1 3 2 1 3 2 1 3 2 1 3 2 0.180 0.360 0.243 -0.063
20 3 1 3 2 2 1 3 2 1 3 2 1 3 0.130 0.230 0.114 0.016
21 3 1 3 2 3 2 1 3 2 1 3 2 1 0.188 0.413 0.296 -0.108
22 3 2 1 3 1 3 2 2 1 3 3 2 1 0.163 0.294 0.178 -0.015
23 3 2 1 3 2 1 3 3 2 1 1 3 2 0.050 0.097 -0.020 0.070
24 3 2 1 3 3 2 1 1 3 2 2 1 3 0.213 0.398 0.281 -0.068
25 3 3 2 1 1 3 2 3 2 1 2 1 3 0.135 0.326 0.210 -0.075
26 3 3 2 1 2 1 3 1 3 2 3 2 1 0.122 0.248 0.132 -0.010
27 3 3 2 1 3 2 1 2 1 3 1 3 2 0.253 0.457 0.341 -0.088

u=0.12
r1 0.13 0.13 0.12 0.12 0.15 0.13 0.16 0.13 0.13 0.11 0.13 0.12 0.12 235.0=Y
r2

0.06 0.09 0.12 0.11 0.07 0.12 0.10 0.12 0.10 0.12 0.11 0.12 0.11 118.0ˆ =Y
r3

0.16 0.13 0.12 0.12 0.14 0.11 0.10 0.11 0.12 0.13 0.11 0.11 0.12 000.0ˆ =- yy
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Table (2) Triangular table associated with OA27(313) matrix

Assignment of experiments
In  an  OAD matrix  each  column may  be  used

as an independent parameter to assign a factor or two-
variable interaction. The triangular table can be
employed to assign two-variable interaction in OAD
matrix.
As  an  example,  the  use  of  Table  2  is  illustrated  as
follows. Suppose that variables A and B are assigned
to column 3 and 6 respectively, from Table 2 it can be
seen  that  the  interaction  between  column  3  and  6  is
numbers 10 and 11, and thus the interaction between A
and B must be assigned to column 10 and 11. Further,
if  another  variable  C  is  to  be  considered,  it  can  be
randomly assigned to one of these columns except
column 3, 6, 10 and 11. Suppose that variable C is
assign to column 5, then according to Table 2, the
interaction between A and C must be assigned to
column 9 and 13, the interaction between B and C to
columns 1 and 7, and so forth.

Optimization Strategy
To estimate the factors’ effects after

implementing the three-level OAD, the analysis of
variance (ANOVA) technique was employed where
both SS ¢ (purified  sum  of  the  squares)  and  PC  (%)

(Percentage contribution) value for each factor can be
computed. SS ¢  is defined as the sum of squares minus
the variance due to error, while PC (%) is the relative
contribution of SS ¢  for each factor, or the error to the
total variance. The importance of a variable and/or
interaction  can  be  estimated  from  the  PC  (%)  values
due to each significant factor. Furthermore, the PC (%)
value due to the error provides an estimate of the
adequacy of the experiment. The ANOVA equations
including percentage contribution for a three-level
orthogonal array design are shown in Table 3.

Note that when no replicate experiments are
carried out, the computational formula for the variance
of error given in Table 3 is not suitable because no
degrees of freedom resulting from replicate experiments
are available   (I(J-1)=0). Hence, in this event the
variance of error and its degrees of freedom need to
compute by pooling the variances of the dummy
columns (in which no main variables and significant
interactions are assigned) and their degrees of freedom.
Alternatively, the total variance and total degrees of
freedom can be computed by using the equations given
in Table 3, and then the error variance and its degrees of
freedom can be calculated by the following equations:

Column
no. 2 3 4 5 6 7 8 9 10 11 12 13
1 3 2 2 6 5 5 9 8 8 12 11 11

4 4 3 7 7 6 10 10 9 13 13 12
2 1 1 8 9 10 5 6 7 5 6 7

4 3 11 12 13 11 12 13 8 9 10
3 1 9 10 8 7 5 6 6 7 5

2 13 11 12 12 13 11 10 8 9
4 10 8 9 6 7 5 7 5 6

12 13 11 13 11 12 9 10 8
5 1 1 2 3 4 2 4 3

7 6 11 13 12 8 10 9
6 1 4 2 3 3 2 4

5 13 12 11 10 9 8
7 3 4 2 4 3 2

12 11 13 9 8 10
8 1 1 2 3 4

10 9 5 7 6
9 1 4 2 3

8 7 6 5
10 3 4 2

6 5 7
11 1 1

13 12
12 1

11
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å-= xtotalerror SSSSSS                     (13)

å-= xtotalerror dfdfdf            (14)
On  the  basis  of  the  results  obtained  from  ANOVA,
according to eqn. (7), a quadratic regression equation
representing a response surface can be expressed as
follows:

å å +F+F+=
s s

sssss
x x

xsxxxy ebbb 2
0  (15)

In which if xs represents a two-variable interaction, e.g.,
A × B, the following formula must be employed:

BABABA FF=F=F ´´ 21 )()(             (16)

According to the derivative algorithm , the optimum xF
value for each variable considered can be calculated, and
then if each optimum xF  value obtained is substituted
into eqn. (2), the optimum input value (Zx ) for each
variable considered can be achieved.

Result and Discussion

Many methods have been developed for
determination of V (IV). They include titrimetic [17],
X-ray fluorescence [18], liquid-liquid extraction [19],
liquid chromatography [20], Capilary zone

electrophoretic [21], and Flow injection [22],
chemiluminescent [23]. In this study, three level OAD
was used as a chemometric approach for determination
of V (IV). Four variables are considered in this work:
(A) IC Concentration (M); B KBrO3 Concentration
(M); (C) pH; (D) Temperature. In the OAD matrix all
of the possible two-variable interactions are
considered. The assignment of the main variables and
two-variable interactions, and their levels are given in
Table 4. After conducting all the experiments, the
results obtained are given in Table 1. The average of
the accuracy for each factor at level 1, 2, and 3 (r1, r2,
r3)  are  also  calculated  and  given  in  Table  1  so  as  to
facilitate ANOVA and establish a quadratic regression
model. The computed results of sums of squares
(shown in Table 5) indicate that the four two-variable
interactions assigned to columns 3, 4, 12, and 13.
Therefore  columns  3,  4,  12,  13  must  be  treated  as
dummies and the error variance must be pooled from
the sums of the squares for the total of four columns
(3, 4, 12, 13). Then by using eqns. (13) and (14), the
variance of error and its degrees of freedom can be
obtained (shown in Table 6).  From Table 6,  it  can be
seen that the variance of error pooled from dummies is
in good agreement with that computed by eqn. (13).

Table (3) ANOVA equations including percentage contribution for a three-level orthogonal array design:
SS, sum of square ; df, degrees of freedom; MS, mean square; SS’, purified sum of square; and PC,
percentage contribution.

Source of
variance

SS df MS F-
value
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Table (4 ) The assignment of factors levels of experiment using an OA27 (313) matrix
Column no.

1 2 3 4 5 6 7 8 9 10 11 12 13

A B
(AXB)1
(CXD)2

(AXB)2 C (AXC)1
(BXD)2

(AXC)2 (BXC)1
(AXD)2

D (AXD)1 (BXC)2 (BXD)1 (CXD)1

5X10-5 0.6X10-3 1 20
8X10-5 1.8X10-3 3 25
11X10-5 3.0X10-3 5 30

A= IC Concentration (M); B = KBrO3 Concentration (M); C = pH; D = Temperature ( o C)
____________________________________________________________________________________
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ANOVA including percentage contribution is
calculated and shown in Table 6. Table 6 indicates that
the main variable A, C the interactions A × C are
statistically significant at p< 0.001 and the main
variable B and D at p<0.01, whereas no statistical
differences are observed for any other main variable B
and any other main interactions at p>0.1. Moreover,
from the percentage contribution calculated (shown in
Table 6, it can be seen that the most significant effect
contributing to the output response is A (37.81%), C
(31.34%), A × C (17.75%), B (6.032%) and D
(3.02%). The percentage contribution due to errors
(unknown and uncontrolled factors) is low (0.528%).
This means that no important variables and/or
interactions have been omitted in this work. Therefore,
it is reasonable to neglect the italicized two-variable
interactions mentioned earlier.
By using equn (9) and (10), we can calculate βx and βxx
for each factor that has a significant influence. Then,
according to the eqns. (15), (16), the following
quadratic regression equation can be obtained:

-+-++++= 222
0 078.000739.0035.00038.00835.00133.0 CCBBAAy ffffffb

effffff ++-+ 222 0308.00372.00254.000287.0 CACADD

                                                              …..(17)

As -1<ΦA < 1 or -1<ΦC < 1, the second- order
effect of the interaction ( 2203.0 CAFF )  can  be
incorporated into the ε item. In addition, for each

experimental trial, by substituting the Φxk values
[given in eqn. (5)], in which the level setting (k) for
each factor is varied with the level number of the
intersection in Table 1, into eqn. (17), the polynomial
value excluding the β0  item (Y) can be computed and
the figures are given in Table 1. Combined with eqn.
(12), it is clear that the mean of the difference between
y  and  Y  ( Yy - , i=27; shown in Table 1) can be
considered  as  the  β0 item.  Thus,  eqn.  (17)  can  be
rewritten as:

-+-++++= 222 078.000739.0035.00038.00835.00133.0116.0 CCBBAAy ffffff

effffff ++-+ 222 0308.00372.00254.000287.0 CACADD

                                       …..(18)

Hence, according to eqn. (18), the expected
value  ( ŷ ) (polynomial value including the β0 term)
and  the  random  error  item  ( yy ˆ-=e ) for each
experimental trial in the OA27 (313) matrix are
calculated and given in Table (1). The results obtained
show that the expected value for each experimental
trial is in good agreement with the corresponding
experimental value. The mean of the random error
item ( yy ˆ- ,  i=16) equals  zero (see Table (1)),  which
is in accordance with the assumption given in eqn.
(12). Therefore, the quadratic regression equation
given in eqn. (18) can adequately and accurately
represent the described response surface.

Table (5) ANOVA including percentage contribution for output responses in the OA27 (313) matrix

*Critical F value is 18.5 (***p<0.001), and 8.6 (**p<0.01)
        † Resulted from pooling dummy variances.
        ‡ Computed by eqn. (13).

Source SS V MS F* SS ¢ PC (%)
IC (A) 0.045 2 0.0225 99.39 *** 0.045 37.81
KBrO3 (B) 0.008 2 0.004 16.7** 0.0071 6.032
pH (C ) 0.037 2 0.0165 82.58*** 0.037 31.34
T (D) 0.004 2 0.002 8.87** 0.0035 3.02
A × C 0.022 4 0.0055 24.9*** 0.021 17.75
B × C 0.0051 4 0.00127 5.6 0.0042 3.52
A × D 0.003 4 0.00075 3.32 0.0021 -
Errors† 0.0018 8 0.00023 - 0.0045 0.528
Errors‡ 0.00191 8
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According to the derivative algorithms, the
optimum Φ value for each factor that has a significant
influence is ΦA= -0.0088; ΦB= -0.0542; ΦC= -0.045
and; ΦD= 0.056. Therefore, by means of eqn. (2), the
following optimum conditions (i) M5109.7 -´  of IC
(ii) M31073.1 -´   (iii) pH = 2.91 (iv) 25.3 oC
temperature can be obtained.

Conclusion
Application of an orthogonal design for determination
of V (IV), based on the catalytic effected on the
oxidation reaction of Indigo Carmin by bromate was
considered. This method provides precise results and
the reaction was monitored spectrophotometrically by
measuring the decrease in absorbance of Indigo
Carmin at 612 nm. Three-level orthogonal array design
(OAD)  was  used  as  a  chemometric  approach  to
optimize the reaction and study the effect of various
factors on recovery of extraction.
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