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Abstract: Self assembly provides a simple route  to organise suitable organic molecules on noble metal surface
by using long chain organic molecules with various functionalities like -SH,-COOH,-NH2 , Silanes etc. These
surfaces  can  be  used  to  build  up  interesting  nano  level  architectures.  Self  assembly  is  an  interesting  process  for
biological relevance because it provides a novel approach to complex structure having nanometre scale
dimensions. The self assembled monolayers (SAMs) can be characterized by the number of techniques such as
Contact angle goniometry, X-ray photoelectron spectroscopy, Infra red and scanning probe microscopy which
provides the valuable information about the SAMs.
Keywords: SAMs, monolayer, characterization, SAM formation.

Introduction

Self assembled monolayers (SAMs) are highly ordered
molecular assemblies formed spontaneously by
chemisorptions and self organization of long chain
molecules on the surface of appropriate substrates.
This  is  an  interesting  process  for  its  biological
relevance because it provides a novel approach to
complex structure having nanoscale dimensions. These
types of structures are difficult to prepare by
traditional methods1.  Alkanthiols self assembly onto
gold is the most studied example of SAMs which
determine the strong gold sulphur and chain- chain
interactions. SAMs have been applied in the
development of sensors2-3, interfaces4 and
microfabrication 5-9. One of the most important class of
SAMs is based on the strong adsorption of sulphur-
based compounds- thiols, diulphides, sulphide, and
related moieties on coinage metals, particularly Au,
Ag, Cu as well as Pt, Hg, Ga, As {100} and InP {100}
surfaces10-16. During the formation of self assembled
monolayers adsorption is generally carried out by
placing the substrate in dilute solution of thiols. Any
solvent which is capable of dissolving the thiol can be
used. Adsorption can be also carried out under

potential control or from the vapour phase 12.  A  wide
range of fundamentals groups can be merged into the
SAM without any destabilisation 10-16.  The nature of
the terminal groups plays an important role in
determining the properties of the monolayers such as
wettability and ionisation 14.  The  field  of  self
assembled monolyers has fascinated tremendous
growth in synthetic sophistication and depth of
characterization over the past few years 17.
In 1946 Zisman has studied the preparation of mono
molecular layers by adsorption (self assembly) of a
surfactant onto a clean metal surface. Nuzzo and Alara
also showed that SAMs of alkanethiols on gold can be
prepared by adsorption of di-n-alkyl sulphides from
dilute solutions. Formation of monolyers by self
assembly of surfactant molecules at surface are the
examples of the general phenomenon of self assembly.
Self assembly process provides a chance to increase
fundamental understanding of self organization,
structure property, relationships and interfacial
phenomenon. Excellency of SAMs depends upon the
tailoring of both head and tail groups of the
constituient molecules. It is useful for understanding of
phenomenon affected by coupling, intermolecular,
molecular substrates and molecule-solvent interaction
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like ordering and growth, wetting, adhesion,
lubrication and corrosion 18.
Self assembly is a term of superamolecular chemistry
19 and is generally used to define the superamolecular
interaction among molecules in solution or solid state
to give special arrangement or architectures. This is
also used for formation of micelles and other systems
formed by the surfactants. In this review we will
elaborate the term SAM on the metal surface or
adsorption of molecules on the solid surface.

Formation of self assembled mono and
multilayers on a metal surface
Till date gold has been the most well studied surface
for the self assembly process by using alkanethiols. In
the literature formation of SAMs of alkanethiols on
gold can be summarised as in which, Au (111) surface
present the best characteristics for the formation of
SAMs. The thiolate groups (formed by deprotonation
as a result on the interaction) are associated with the
three Au atoms on the surface. Interaction between
Au-Sulfur is reversible which permits the alkanethiols
anions to interact among themselves in order achieve
the formation of highly compact monolayers.
Alkanethiolates with about 10-20 carbon atoms
achieve highest organised monolayers and assemble on
a gold surface with an angle 300 from the normal to the
surface.
One  of  the  simplest  ways  to  form  the  self  assembled
monolayers is to dip an extremely clean oxidized gold
sheet surface into an ethanol solution of corresponding
alkanethiols. Other types of organic solvents can also
be used. The conc. of the thiol may vary between 1mM
and  1µM.  There  is  a  complete  formation  of  SAM
occur  within  a  time  limit  of  12-18  hr  at  room
temperature because self assembly of molecules occur

within first few seconds but more time is required for
the organised and compact monolayers 18.  A
systematic representation for the formation of SAM is
described in the Fig. (1).
SAM has been built on Silver, Copper, Nickel,
Palladium and Platinum 20 metal surfaces. But Silver,
Nickel and Copper are due to their less interaction can
easily  oxidize.  Copper  can  oxidize  extremely  so  it  is
difficult to obtain the organised and compact SAM on
this metal. A very stable SAM on the Platinum surface
has been obtained by using isocynide 21.  Many metal
complexes such as Ru(bpy)3

22; (C2H5)2Fe 23 and
porphyrin 24-26 can  be  self  assembled  by  thiol  or
disulphide anchor groups on an gold or indium tin
oxide (ITO) electrode, in this  not only the basic
electron transfer kinetics but also photocurrent
generation of sensing properties have been explored.
Except gold other organic groups such as carboxylate,
phosphonate and isocynide also urged to act as surface
immobalised groups 27. These organic groups have
different reactivity towards Gold, Platinum and metal
oxide.  It  is  also  termed  as  orthogonal  self  assembly
which is reported earlier i.e. thiol and disulphide
groups bound to Gold substrate 28.

On the other hand cyanide and pyridine groups are
bound to a platinum surface and phosphonate and
silanol groups to indium tin oxide and metal oxide
surface 29. Thiol -Au self assembled chemistry has
been extensively studied but till date phosphonate
metal oxide self assembled chemistry is not so mature.
In phosphonate –metal oxide self assembled chemistry
the growth mechanism of long chain phosphonic acid
on mica or sapphire has been investigated earlier by
many researchers 30-31.

Fig. 1 Self-assembled monolayers are formed by simply immersing a substrate into a solution of the surface-
active material.
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Self Assembled Monolayers of Fatty acids
There is a continuous absorption of long chain n-
alkanoic acids (CnH2n+1COOH) in the earlier years. In
this acid base reaction and the driving force which is
responsible for formation of a surface salt between the
carboxylate anion and surface metal cation. Scholltter
and his co-workers also reported the spontaneous
adsorption of such acids on silver surface 32.
Chemisorption of alkanoic acids on amorphous metal
oxide surface is not unique which was shown by Tao
and he observed that on the AgO surfaces the
carboxylate two oxygen atoms bind to the surface in a
symmetrical way while on the CuO and Al2O3 surface.
Carboxylate binds asymmetrically to the surface and
show tilt angle zero. From the current Raman studies it
was  observed  that  monolayers  of  steric  acids  on  a
smooth Ag surface are less ordered than the layer
formed on Al2O3 surface33. It has been also observed
that the chains in SAMs on AgO are lying along
normal to the surface and he has also observed through
the IR studies that monolayers on AgO are well
arranged than their counterparts on Al2O3.

Monolayers of organosilicon Derivatives
For the formation of self assembled monolayers of
alkylchlorosilanes, alkylalkoxysilanes, and
alkylaminosilanes require hydroxylated surfaces as
substrates for their formation. The driving force for
this self-assembly is the in situ formation of
polysiloxane, which is connected to surface silanol
groups (-SiOH) via Si-O-Si bonds. Substrates on
which these monolayers have been successfully
prepared include silicon oxide 34-39, aluminum oxide 40-

41, quartz 42-43, glass 39, mica 44-46, zinc selenide 39-40,
germanium oxide 47, and gold 48-50. Recently Allara and
his coworkers have compared OTS monolayers on
silicon oxide and on gold activated by UV-ozone
exposure. IR spectroscopy, ellipsometry, and wetting

measurements showed identical average film structures
51.
Organosilane self assembled monolayers on
SiO2
Organosilanes generally consist of a silicon atom
tetrahedrally bound to three similar functional groups
(short chain alkoxy group or chlorines) then to a
functional group. In case of S-Au ineraction the bond
is mostly charged transfer in nature but head group-
substrate interaction of the Silane and SiO2 surface  is
quite different52. In this silane molecule condense with
native hydroxyl group adorning the SiO2 surface,
forming a thin layer of covalently polysiloxane at the
interface.  Organosilane  SAMs  on  SiO2 have a great
importance in the photo resist industry because of their
patterening by energetic beams which affords
structures that can direct the substrates topographical
etching.

Alkanthiolates on the noble metal surfaces
Lot of the work have been reported in the field of
structure as well as placement of alkanethiolate films
on the surfaces other than the gold such as Platinum 53,
Palladium 54-56, Silver 57-58 and Copper 56, 58. This area
has not been spread extensively but no doubt it will be
extremely useful in balancing order and placement of
molecules with an ability to create stable and
functional nanostructures.

Amino terminated SAMs
Amidation is one of the most widely used surface
reactions on self assembled monolayers. Surface
amino groups can be easily converted to amides by
coupling with a carboxylic acid. An aminotrithiol has
been used for SAM formation 59 and cystammine
absorbs spontaneously onto gold surfaces forming a
uniform and active amino terminated monolayer.
Amidation of cystammine SAMs with azobenzene is
shown in Fig. (2).

Fig. 2 Amidation of cysteamine SAMs with azobenzene 60
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Fig. 3 The reaction scheme of 2, 3-dichloro-1, 4-naphtoquinone to the aminoalkanethiol SAMs on gold
surface62

Self assembly of alkanethiols on a gold surface
Aminoalkane thiols are utilized for the modifications
of Au surface and to introduce amino group on it.
Amino group is usually modified with amine reactive
materials such as protein molecule or biomaterials to
functionalize the Gold surface. 11-amino-1-
undecanethiol monolayers on a gold electrode were
formed and studied the effect of the terminal groups on
the redox reponswes of ferrocene derivatives by
voltmetric techniques 61. They have also reported the
relationship between the alkyl chain length of
aminoalkanethiols and the redox behaviour of 2, 3-
dichloro-1,4-napthoquinone attached to the terminal
amino group shown in Fig. (3) .

Carboxyalkanethiols are also used for the modification
of gold surface to introduce the carboxylic group on it.
Glenn and co-workers used carboxyalkanethiol and
poly  L-lysine  to  create  cytochrome  b5-immoblized
multilayer 63. Hydroxylalkanethiols are utilized as
dilution reagents or blocking reagents on a gold
surface or to present the nonspecific binding of
analytes on the surface.
Mixed SAMs of thiol derivatized single-stranded DNA
(HS-ss-DNA) and 6-hydroxy-1-hexanethiol on a gold
surface. They prevented non specific adsorption of
HS-ss-DNA 64. Dubrovsky and his co-workers
controlled the nonspecific adsorption of protein on the
surface of a gold coated silicagel for the preparation of
well defined and surface-functionalized supports for
biological assay 65.

Characterization of SAMs
Self assembled monolayers (SAMs) can be
characterized by number of experimental methods
which includes physical measurements like contact
angle and wetability, spectroscopic techniques such as
ellipsometery 66, X-ray photon spectroscopy (XPS) 67,

infrared spectroscopy (IR) 68, quartz crystal membrane
(QCM) 69, surface enhanced Raman spectroscopy 70,
(AFM) 71, scanning tunnelling microscopy 72,
fluorescence spectroscopy, surface Plasmon resonance
(SPR) etc. which provide valuable information about
the structure and dynamics of SAMs. Due to their
biological importance several biomolecules like
enzymes or whole cells can be immobilized on SAM
surface and their lipid like microenvironment can be
characterized specially for electrochemical sensing or
biomolecular electronics. Few of the methods are
discussed in this paper.

Contact angle goniometry
To determine the hydrophobicity and hydrophilcity of
a surface, this technique is commonly used; it has been
also  applied  to  the  surface  of  SAM.  In  this  method  a
drop of H2O (or any other liquid) is put into contact
with  the  surface,  then  angle  between  the  film  and
liquid droplet is measured. It determines the degree of
surface order as well as indicate the incorporation of
functional groups, contact angle also changes with
varying film composition. Water droplet will make a
smaller contact angle for the hydrophilic surface such
as (-OH,-COOH, -CO2CH3 terminated surfaces) on the
water will more effectively wet the hydrophilic
surfaces. Many research groups have used contact
angle goniometry to analyze and to estimate the
relative mole fractions of the adsorbates composing
mixed SAMs, as the contact angle will change with
varying film composition. The resolution of the
techniques is occur within the tens of microrange, so
as a result submicron pattern are not readily observed.

X-Ray Photon Spectroscopy
This method is employed to probe the chemical nature
of  SAM,  it  determine  that  a  covalent  bond  exist
between the sulphur head group and the gold substrate,
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it also defined the chemical species, oxidation states of
constituent atoms in the SAM, also demonstrated that
the thickness of single monolayer film.
 In this technique incident X-rays bombarded the
sample and the electrons are ejected from the core
shells of the atoms within the SAM. These electrons
are collected and dispersed in an analyzer and binding
energy are calculated by measuring the kinetic
energies of the electron when enter the analyzer. It is
specific to each element and gives indications of the
oxidation state of the elements. The thickness of the
SAM depends upon the ratio of the substrate signal
before and after the presence of the SAM. It is capable
of identifying the oxidation state as well as elements
present in the SAMs. This technique is considered as a
powerful diagnostic tool to analyze SAMs when they
have been chemically modified.

FT-IR
FT-IR has been widely used to measure the vibrational
frequencies of bonds within molecules. This technique
has been used to characterize the vibrational modes of
SAMs (for both SAMs of n-alkanethiols on gold
substrate as well as for SAMs of alkanoic acids on
alumina supports); it is most recognized for
characterizing the general order within the alkyl matrix
of the molecular backbone.
The alkyl tails vibrate at characteristic frequency range
of 2800-3000 cm-1. Both the breadth of these peaks as
well as the frequencies of the vibrations themselves

gives a picture with a relative order and fraction of
chain defects within the SAM. FT-IR can also identify
the presence of functional groups by identifying their
particular vibrational frequencies such as (amides,
carboxylates and hydroxyls). Thus the progress of
reaction at SAM surface can be determined using FT-
IR.

Scanning probe microscope
Scanning probe microscope played an important role
and they assist  in  the patterening of  SAMs because it
analyzes the spatial distribution of adsorbates across a
surface. Stability of SAM structure is critical and they
will give rise to final patterned structures. Mobility of
the n-alkanethiolates once absorbed to the surface,
their thermal stability and their resistance to variety of
solvents and other environmental factor will ultimately
determine the fate of the applications of the SAMs.

Conclusion
Self assembled monolayers (SAMs) are crystalline
chemisorbed organic single layer formed on solid state
substrates by spontaneous organization of molecules.
Self assembly of thiols on gold has stimulated and
facilitated numerous surface chemical studies and
oppournities.  SAMs  are  an  ideal  model  that  can  be
used to study phenomenon such as wetting, friction,
adhesion and biological interaction.
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